↓ Skip to main content

Effects of dietary Bacillus amyloliquefaciens supplementation on growth performance, intestinal morphology, inflammatory response, and microbiota of intra-uterine growth retarded weanling piglets

Overview of attention for article published in Journal of Animal Science and Biotechnology, March 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (77th percentile)
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

blogs
1 blog
twitter
1 X user
googleplus
1 Google+ user

Citations

dimensions_citation
46 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effects of dietary Bacillus amyloliquefaciens supplementation on growth performance, intestinal morphology, inflammatory response, and microbiota of intra-uterine growth retarded weanling piglets
Published in
Journal of Animal Science and Biotechnology, March 2018
DOI 10.1186/s40104-018-0236-2
Pubmed ID
Authors

Yue Li, Hao Zhang, Weipeng Su, Zhixiong Ying, Yueping Chen, Lili Zhang, Zhaoxin Lu, Tian Wang

Abstract

The focus of recent research has been directed toward the probiotic potential of Bacillus amyloliquefaciens (BA) on the gut health of animals. However, little is known about BA's effects on piglets with intra-uterine growth retardation (IUGR). Therefore, this study investigated the effects of BA supplementation on the growth performance, intestinal morphology, inflammatory response, and microbiota of IUGR piglets. Eighteen litters of newborn piglets were selected at birth, with one normal birth weight (NBW) and two IUGR piglets in each litter (i.e., 18 NBW and 36 IUGR piglets in total). At weaning, the NBW piglet and one of the IUGR piglets were assigned to groups fed a control diet (i.e., the NBW-CON and IUGR-CON groups). The other IUGR piglet was assigned to a group fed the control diet supplemented with 2.0 g BA per kg of diet (i.e., IUGR-BA group). The piglets were thus distributed across three groups for a four-week period. IUGR reduced the growth performance of the IUGR-CON piglets compared with the NBW-CON piglets. It was also associated with decreased villus sizes, increased apoptosis rates, reduced goblet cell numbers, and an imbalance between pro- and anti-inflammatory cytokines in the small intestine. Supplementation with BA improved the average daily weight gain and the feed efficiency of the IUGR-BA group compared with the IUGR-CON group (P < 0.05). The IUGR-BA group exhibited increases in the ratio of jejunal villus height to crypt depth, in ileal villus height, and in ileal goblet cell density. They also exhibited decreases in the numbers of jejunal and ileal apoptotic cells and ileal proliferative cells (P < 0.05). Supplementation with BA increased interleukin 10 content, but it decreased tumor necrosis factor alpha level in the small intestines of the IUGR-BA piglets (P < 0.05). Furthermore, compared with the IUGR-CON piglets, the IUGR-BA piglets had less Escherichia coli in their jejunal digesta, but more Lactobacillus and Bifidobacterium in their ileal digesta (P < 0.05). Dietary supplementation with BA improves morphology, decreases inflammatory response, and regulates microbiota in the small intestines of IUGR piglets, which may contribute to improved growth performance during early life.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 14%
Researcher 5 12%
Student > Master 5 12%
Student > Ph. D. Student 4 10%
Student > Doctoral Student 3 7%
Other 7 17%
Unknown 12 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 21%
Immunology and Microbiology 6 14%
Veterinary Science and Veterinary Medicine 4 10%
Biochemistry, Genetics and Molecular Biology 2 5%
Medicine and Dentistry 2 5%
Other 5 12%
Unknown 14 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 March 2018.
All research outputs
#4,241,329
of 25,382,440 outputs
Outputs from Journal of Animal Science and Biotechnology
#64
of 904 outputs
Outputs of similar age
#79,620
of 351,846 outputs
Outputs of similar age from Journal of Animal Science and Biotechnology
#3
of 24 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 904 research outputs from this source. They receive a mean Attention Score of 3.3. This one has done particularly well, scoring higher than 92% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 351,846 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 77% of its contemporaries.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.