↓ Skip to main content

Molecular analysis of the aspartate kinase-homoserine dehydrogenase gene from Arabidopsis thaliana

Overview of attention for article published in Plant Molecular Biology, March 1994
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (62nd percentile)

Mentioned by

patent
2 patents
wikipedia
1 Wikipedia page

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Molecular analysis of the aspartate kinase-homoserine dehydrogenase gene from Arabidopsis thaliana
Published in
Plant Molecular Biology, March 1994
DOI 10.1007/bf00014439
Pubmed ID
Authors

Marc Ghislain, Valérie Frankard, Dirk Vandenbossche, Benjamin F. Matthews, Michel Jacobs

Abstract

The gene encoding Arabidopsis thaliana aspartate kinase (ATP:L-aspartate 4-phosphotransferase, EC 2.7.2.4) was isolated from genomic DNA libraries using the carrot ak-hsdh gene as the hybridizing probe. Two genomic libraries from different A. thaliana races were screened independently with the ak probe and the hsdh probe. Nucleotide sequences of the A. thaliana overlapping clones were determined and encompassed 2 kb upstream of the coding region and 300 bp downstream. The corresponding cDNA was isolated from a cDNA library made from poly(A)(+)-mRNA extracted from cell suspension cultures. Sequence comparison between the Arabidopsis gene product and an AK-HSDH bifunctional enzyme from carrot and from the Escherichia coli thrA and metL genes shows 80%, 37.5% and 31.4% amino acid sequence identity, respectively. The A. thaliana ak-hsdh gene is proposed to be the plant thrA homologue coding for the AK isozyme feedback inhibited by threonine. The gene is present in A. thaliana in single copy and functional as evidenced by hybridization analyses. The apoprotein-coding region is interrupted by 15 introns ranging from 78 to 134 bp. An upstream chloroplast-targeting sequence with low sequence similarity with the carrot transit peptide was identified. A signal sequence is proposed starting from a functional ATG initiation codon to the first exon of the apoprotein. Two additional introns were identified: one in the 5' non-coding leader sequence and the other in the putative chloroplast targeting sequence. 5' sequence analysis revealed the presence of several possible promoter elements as well as conserved regulatory motifs. Among these, an Opaque2 and a yeast GCN4-like recognition element might be relevant for such a gene coding for an enzyme limiting the carbon-flux entry to the biosynthesis of several essential amino acids. 3' sequence analysis showed the occurrence of two polyadenylation signals upstream of the polyadenylation site. This work is the first report of the molecular cloning of a plant ak-hsdh genomic sequence. It describes a promoter element that may bring new insights to the regulation of the biosynthesis of the aspartate family of amino acids.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Canada 2 12%
Unknown 15 88%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 35%
Other 2 12%
Professor 2 12%
Researcher 2 12%
Student > Ph. D. Student 1 6%
Other 2 12%
Unknown 2 12%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 35%
Biochemistry, Genetics and Molecular Biology 3 18%
Veterinary Science and Veterinary Medicine 1 6%
Unknown 7 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 January 2020.
All research outputs
#4,696,396
of 22,787,797 outputs
Outputs from Plant Molecular Biology
#390
of 2,846 outputs
Outputs of similar age
#2,624
of 22,502 outputs
Outputs of similar age from Plant Molecular Biology
#7
of 32 outputs
Altmetric has tracked 22,787,797 research outputs across all sources so far. Compared to these this one has done well and is in the 76th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,846 research outputs from this source. They receive a mean Attention Score of 4.3. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 22,502 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 32 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 62% of its contemporaries.