↓ Skip to main content

Evolutionary conservation and tissue-specific processing of Hoxa 11 antisense transcripts

Overview of attention for article published in Mammalian Genome, October 1998
Altmetric Badge

Mentioned by

wikipedia
3 Wikipedia pages

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Evolutionary conservation and tissue-specific processing of Hoxa 11 antisense transcripts
Published in
Mammalian Genome, October 1998
DOI 10.1007/s003359900870
Pubmed ID
Authors

S. Steven Potter, William W. Branford

Abstract

We previously described the existence of abundant, processed, polyadenylated murine Hoxa 11 antisense transcripts. Of particular interest, in the developing limbs the antisense transcripts were observed to be present in a pattern complementary to that of the sense transcripts, suggesting a possible regulatory function (Hsieh-Li et al. 1995). We have analyzed the human HOXA 11 genomic locus, showing strong evolutionary conservation of regions potentially encoding antisense transcripts. Human HOXA 11 fetal kidney antisense cDNAs were identified and sequenced, demonstrating the evolutionary conservation of Hoxa 11 antisense transcription. As for the mouse, the human antisense RNAs were polyadenylated and showed several alternative processing patterns, but shared the sequences of a common 3' exon. The evolutionary conservation of the opposite strand transcripts strongly suggests function. A significantly long open reading frame was observed, but mouse-human comparisons argued against true coding function. Murine kidney Hoxa 11 antisense transcription and processing was also examined, revealing tissue-specific differences between limb and kidney. A novel procedure, designated Race in Circles, was devised and used to define mouse limb antisense transcription start sites. Furthermore, comparisons of human, mouse, and chicken sense transcript Hoxa 11 homeobox nucleotide sequences and their respective encoded homeodomains indicate a very strong selective pressure in vertebrates against mutations that result in coding changes. Given the significant differences in amino acid sequences of the homeodomains of different Hox genes, this observation argues for individual homeodomain functional specificity.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 6%
Canada 1 6%
Unknown 16 89%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 22%
Researcher 4 22%
Student > Ph. D. Student 2 11%
Other 2 11%
Professor > Associate Professor 2 11%
Other 1 6%
Unknown 3 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 39%
Agricultural and Biological Sciences 7 39%
Nursing and Health Professions 1 6%
Medicine and Dentistry 1 6%
Unknown 2 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 July 2018.
All research outputs
#7,454,066
of 22,788,370 outputs
Outputs from Mammalian Genome
#318
of 1,126 outputs
Outputs of similar age
#10,113
of 32,868 outputs
Outputs of similar age from Mammalian Genome
#4
of 11 outputs
Altmetric has tracked 22,788,370 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,126 research outputs from this source. They receive a mean Attention Score of 4.6. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 32,868 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 9th percentile – i.e., 9% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one is in the 9th percentile – i.e., 9% of its contemporaries scored the same or lower than it.