↓ Skip to main content

Characterizing exposure to household air pollution within the Prospective Urban Rural Epidemiology (PURE) study

Overview of attention for article published in Environment International, March 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)
  • Good Attention Score compared to outputs of the same age and source (67th percentile)

Mentioned by

1 blog
4 X users


66 Dimensions

Readers on

210 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Characterizing exposure to household air pollution within the Prospective Urban Rural Epidemiology (PURE) study
Published in
Environment International, March 2018
DOI 10.1016/j.envint.2018.02.033
Pubmed ID

Raphael E. Arku, Aaron Birch, Matthew Shupler, Salim Yusuf, Perry Hystad, Michael Brauer


Household air pollution (HAP) from combustion of solid fuels is an important contributor to disease burden in low- and middle-income countries (LIC, and MIC). However, current HAP disease burden estimates are based on integrated exposure response curves that are not currently informed by quantitative HAP studies in LIC and MIC. While there is adequate evidence supporting causal relationships between HAP and respiratory disease, large cohort studies specifically examining relationships between quantitative measures of HAP exposure with cardiovascular disease are lacking. We aim to improve upon exposure proxies based on fuel type, and to reduce exposure misclassification by quantitatively measuring exposure across varying cooking fuel types and conditions in diverse geographies and socioeconomic settings. We leverage technology advancements to estimate household and personal PM2.5 (particles below 2.5 μm in aerodynamic diameter) exposure within the large (N~250,000) multi-country (N~26) Prospective Urban and Rural Epidemiological (PURE) cohort study. Here, we detail the study protocol and the innovative methodologies being used to characterize HAP exposures, and their application in epidemiologic analyses. This study characterizes HAP PM2.5 exposures for participants in rural communities in ten PURE countries with >10% solid fuel use at baseline (Bangladesh, Brazil, Chile, China, Colombia, India, Pakistan, South Africa, Tanzania, and Zimbabwe). PM2.5 monitoring includes 48-h cooking area measurements in 4500 households and simultaneous personal monitoring of male and female pairs from 20% of the selected households. Repeat measurements occur in 20% of households to assess impacts of seasonality. Monitoring began in 2017, and will continue through 2019. The Ultrasonic Personal Aerosol Sampler (UPAS), a novel, robust, and inexpensive filter based monitor that is programmable through a dedicated mobile phone application is used for sampling. Pilot study field evaluation of cooking area measurements indicated high correlation between the UPAS and reference Harvard Impactors (r = 0.91; 95% CI: 0.84, 0.95; slope = 0.95). To facilitate tracking and to minimize contamination and analytical error, the samplers utilize barcoded filters and filter cartridges that are weighed pre- and post-sampling using a fully automated weighing system. Pump flow and pressure measurements, temperature and RH, GPS coordinates and semi-quantitative continuous particle mass concentrations based on filter differential pressure are uploaded to a central server automatically whenever the mobile phone is connected to the internet, with sampled data automatically screened for quality control parameters. A short survey is administered during the 48-h monitoring period. Post-weighed filters are further analyzed to estimate black carbon concentrations through a semi-automated, rapid, cost-effective image analysis approach. The measured PM2.5 data will then be combined with PURE survey information on household characteristics and behaviours collected at baseline and during follow-up to develop quantitative HAP models for PM2.5 exposures for all rural PURE participants (~50,000) and across different cooking fuel types within the 10 index countries. Both the measured (in the subset) and the modelled exposures will be used in separate longitudinal epidemiologic analyses to assess associations with cardiopulmonary mortality, and disease incidence. The collected data and resulting characterization of cooking area and personal PM2.5 exposures in multiple rural communities from 10 countries will better inform exposure assessment as well as future epidemiologic analyses assessing the relationships between quantitative estimates of chronic HAP exposure with adult mortality and incident cardiovascular and respiratory disease. This will provide refined and more accurate exposure estimates in global CVD related exposure-response analyses.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 210 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 210 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 36 17%
Student > Master 22 10%
Researcher 17 8%
Student > Bachelor 17 8%
Student > Doctoral Student 9 4%
Other 32 15%
Unknown 77 37%
Readers by discipline Count As %
Environmental Science 23 11%
Medicine and Dentistry 22 10%
Nursing and Health Professions 18 9%
Social Sciences 12 6%
Engineering 11 5%
Other 37 18%
Unknown 87 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 January 2022.
All research outputs
of 25,382,440 outputs
Outputs from Environment International
of 5,188 outputs
Outputs of similar age
of 348,698 outputs
Outputs of similar age from Environment International
of 118 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 5,188 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 26.8. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 348,698 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 118 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.