↓ Skip to main content

Imputation from SNP chip to sequence: a case study in a Chinese indigenous chicken population

Overview of attention for article published in Journal of Animal Science and Biotechnology, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
googleplus
1 Google+ user

Citations

dimensions_citation
38 Dimensions

Readers on

mendeley
43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Imputation from SNP chip to sequence: a case study in a Chinese indigenous chicken population
Published in
Journal of Animal Science and Biotechnology, March 2018
DOI 10.1186/s40104-018-0241-5
Pubmed ID
Authors

Shaopan Ye, Xiaolong Yuan, Xiran Lin, Ning Gao, Yuanyu Luo, Zanmou Chen, Jiaqi Li, Xiquan Zhang, Zhe Zhang

Abstract

Genome-wide association studies and genomic predictions are thought to be optimized by using whole-genome sequence (WGS) data. However, sequencing thousands of individuals of interest is expensive. Imputation from SNP panels to WGS data is an attractive and less expensive approach to obtain WGS data. The aims of this study were to investigate the accuracy of imputation and to provide insight into the design and execution of genotype imputation. We genotyped 450 chickens with a 600 K SNP array, and sequenced 24 key individuals by whole genome re-sequencing. Accuracy of imputation from putative 60 K and 600 K array data to WGS data was 0.620 and 0.812 for Beagle, and 0.810 and 0.914 for FImpute, respectively. By increasing the sequencing cost from 24X to 144X, the imputation accuracy increased from 0.525 to 0.698 for Beagle and from 0.654 to 0.823 for FImpute. With fixed sequence depth (12X), increasing the number of sequenced animals from 1 to 24, improved accuracy from 0.421 to 0.897 for FImpute and from 0.396 to 0.777 for Beagle. Using optimally selected key individuals resulted in a higher imputation accuracy compared with using randomly selected individuals as a reference population for re-sequencing. With fixed reference population size (24), imputation accuracy increased from 0.654 to 0.875 for FImpute and from 0.512 to 0.762 for Beagle as the sequencing depth increased from 1X to 12X. With a given total cost of genotyping, accuracy increased with the size of the reference population for FImpute, but the pattern was not valid for Beagle, which showed the highest accuracy at six fold coverage for the scenarios used in this study. In conclusion, we comprehensively investigated the impacts of several key factors on genotype imputation. Generally, increasing sequencing cost gave a higher imputation accuracy. But with a fixed sequencing cost, the optimal imputation enhance the performance of WGP and GWAS. An optimal imputation strategy should take size of reference population, imputation algorithms, marker density, and population structure of the target population and methods to select key individuals into consideration comprehensively. This work sheds additional light on how to design and execute genotype imputation for livestock populations.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 43 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 19%
Student > Ph. D. Student 7 16%
Student > Doctoral Student 4 9%
Student > Master 3 7%
Lecturer 1 2%
Other 5 12%
Unknown 15 35%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 35%
Biochemistry, Genetics and Molecular Biology 6 14%
Veterinary Science and Veterinary Medicine 2 5%
Unspecified 1 2%
Social Sciences 1 2%
Other 0 0%
Unknown 18 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 March 2018.
All research outputs
#16,728,456
of 25,382,440 outputs
Outputs from Journal of Animal Science and Biotechnology
#403
of 905 outputs
Outputs of similar age
#213,452
of 347,622 outputs
Outputs of similar age from Journal of Animal Science and Biotechnology
#10
of 21 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 905 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 347,622 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.