↓ Skip to main content

DNA-Protein Interactions

Overview of attention for book
Cover of 'DNA-Protein Interactions'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Electrophoretic Mobility Shift Assay Using Radiolabeled DNA Probes
  3. Altmetric Badge
    Chapter 2 In Vitro DNase I Footprinting
  4. Altmetric Badge
    Chapter 3 DNA-Protein Interactions
  5. Altmetric Badge
    Chapter 4 In Cellulo DNA Analysis: LMPCR Footprinting.
  6. Altmetric Badge
    Chapter 5 Southwestern Blotting Assay
  7. Altmetric Badge
    Chapter 6 Single-Molecule Approaches for the Characterization of Riboswitch Folding Mechanisms
  8. Altmetric Badge
    Chapter 7 Probing of Nascent Riboswitch Transcripts
  9. Altmetric Badge
    Chapter 8 DNA-Protein Interactions
  10. Altmetric Badge
    Chapter 9 Precise Identification of Genome-Wide Transcription Start Sites in Bacteria by 5'-Rapid Amplification of cDNA Ends (5'-RACE).
  11. Altmetric Badge
    Chapter 10 Analysis of DNA Supercoiling Induced by DNA-Protein Interactions.
  12. Altmetric Badge
    Chapter 11 Precise Identification of DNA-Binding Proteins Genomic Location by Exonuclease Coupled Chromatin Immunoprecipitation (ChIP-exo).
  13. Altmetric Badge
    Chapter 12 The Cruciform DNA Mobility Shift Assay: A Tool to Study Proteins That Recognize Bent DNA.
  14. Altmetric Badge
    Chapter 13 Individual and Sequential Chromatin Immunoprecipitation Protocols.
  15. Altmetric Badge
    Chapter 14 Chromatin Endogenous Cleavage (ChEC) as a Method to Quantify Protein Interaction with Genomic DNA in Saccharomyces cerevisiae.
  16. Altmetric Badge
    Chapter 15 Selection and Validation of Spacer Sequences for CRISPR-Cas9 Genome Editing and Transcription Regulation in Bacteria.
  17. Altmetric Badge
    Chapter 16 Detection of Short-Range DNA Interactions in Mammalian Cells Using High-Resolution Circular Chromosome Conformation Capture Coupled to Deep Sequencing.
  18. Altmetric Badge
    Chapter 17 Global Mapping of Open Chromatin Regulatory Elements by Formaldehyde-Assisted Isolation of Regulatory Elements Followed by Sequencing (FAIRE-seq).
  19. Altmetric Badge
    Chapter 18 Aggregate and Heatmap Representations of Genome-Wide Localization Data Using VAP, a Versatile Aggregate Profiler.
  20. Altmetric Badge
    Chapter 19 Circular Dichroism for the Analysis of Protein–DNA Interactions
  21. Altmetric Badge
    Chapter 20 Quantitative Investigation of Protein–Nucleic Acid Interactions by Biosensor Surface Plasmon Resonance
  22. Altmetric Badge
    Chapter 21 Identification of Nucleic Acid High Affinity Binding Sequences of Proteins by SELEX
Attention for Chapter 4: In Cellulo DNA Analysis: LMPCR Footprinting.
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
In Cellulo DNA Analysis: LMPCR Footprinting.
Chapter number 4
Book title
DNA-Protein Interactions
Published in
Methods in molecular biology, January 2015
DOI 10.1007/978-1-4939-2877-4_4
Pubmed ID
Book ISBNs
978-1-4939-2876-7, 978-1-4939-2877-4
Authors

Drouin, Régen, Bastien, Nathalie, Millau, Jean-François, Vigneault, François, Paradis, Isabelle, Régen Drouin, Nathalie Bastien, Jean-François Millau, François Vigneault, Isabelle Paradis

Abstract

The in cellulo analysis of protein-DNA interactions and chromatin structure is very important to better understand the mechanisms involved in the regulation of gene expression. The nuclease-hypersensitive sites and sequences bound by transcription factors often correspond to genetic regulatory elements. Using the ligation-mediated polymerase chain reaction (LMPCR) technology, it is possible to precisely analyze these DNA sequences to demonstrate the existence of DNA-protein interactions or unusual DNA structures directly in living cells. Indeed, the ideal chromatin substrate is, of course, found inside intact cells. LMPCR, a genomic sequencing technique that map DNA single-strand breaks at the sequence level of resolution, is the method of choice for in cellulo footprinting and DNA structure studies because it can be used to investigate complex animal genomes, including human. The detailed conventional and automated LMPCR protocols are presented in this chapter.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 50%
Researcher 2 33%
Student > Doctoral Student 1 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 50%
Biochemistry, Genetics and Molecular Biology 2 33%
Chemistry 1 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 September 2015.
All research outputs
#20,292,660
of 22,829,083 outputs
Outputs from Methods in molecular biology
#9,916
of 13,125 outputs
Outputs of similar age
#295,850
of 353,131 outputs
Outputs of similar age from Methods in molecular biology
#636
of 997 outputs
Altmetric has tracked 22,829,083 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,125 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,131 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 997 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.