↓ Skip to main content

Protein Engineering

Overview of attention for book
Cover of 'Protein Engineering'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Protein Engineering: Past, Present, and Future
  3. Altmetric Badge
    Chapter 2 Rational and Semirational Protein Design
  4. Altmetric Badge
    Chapter 3 Computational Analysis of Protein Tunnels and Channels
  5. Altmetric Badge
    Chapter 4 YASARA: A Tool to Obtain Structural Guidance in Biocatalytic Investigations
  6. Altmetric Badge
    Chapter 5 A Computational Library Design Protocol for Rapid Improvement of Protein Stability: FRESCO
  7. Altmetric Badge
    Chapter 6 Directed Evolution of Proteins Based on Mutational Scanning
  8. Altmetric Badge
    Chapter 7 A Brief Guide to the High-Throughput Expression of Directed Evolution Libraries
  9. Altmetric Badge
    Chapter 8 Library Growth and Protein Expression: Optimal and Reproducible Microtiter Plate Expression of Recombinant Enzymes in E. coli Using MTP Shakers
  10. Altmetric Badge
    Chapter 9 Normalized Screening of Protein Engineering Libraries by Split-GFP Crude Cell Extract Quantification
  11. Altmetric Badge
    Chapter 10 Functional Analysis of Membrane Proteins Produced by Cell-Free Translation
  12. Altmetric Badge
    Chapter 11 Practical Considerations Regarding the Choice of the Best High-Throughput Assay
  13. Altmetric Badge
    Chapter 12 High-Throughput Screening Assays for Lipolytic Enzymes
  14. Altmetric Badge
    Chapter 13 Continuous High-Throughput Colorimetric Assays for α -Transaminases
  15. Altmetric Badge
    Chapter 14 Colorimetric High-Throughput Screening Assays for the Directed Evolution of Fungal Laccases
  16. Altmetric Badge
    Chapter 15 Directed Coevolution of Two Cellulosic Enzymes in Escherichia coli Based on Their Synergistic Reactions
  17. Altmetric Badge
    Chapter 16 Program-Guided Design of High-Throughput Enzyme Screening Experiments and Automated Data Analysis/Evaluation
  18. Altmetric Badge
    Chapter 17 Solid-Phase Agar Plate Assay for Screening Amine Transaminases
  19. Altmetric Badge
    Chapter 18 Ultrahigh-Throughput Screening of Single-Cell Lysates for Directed Evolution and Functional Metagenomics
  20. Altmetric Badge
    Chapter 19 Isolation of pH-Sensitive Antibody Fragments by Fluorescence-Activated Cell Sorting and Yeast Surface Display
  21. Altmetric Badge
    Chapter 20 Library Generation and Auxotrophic Selection Assays in Escherichia coli and Thermus thermophilus
  22. Altmetric Badge
    Chapter 21 Erratum to: Functional Analysis of Membrane Proteins Produced by Cell-Free Translation
Attention for Chapter 18: Ultrahigh-Throughput Screening of Single-Cell Lysates for Directed Evolution and Functional Metagenomics
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (68th percentile)
  • High Attention Score compared to outputs of the same age and source (87th percentile)

Mentioned by

twitter
7 X users

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Ultrahigh-Throughput Screening of Single-Cell Lysates for Directed Evolution and Functional Metagenomics
Chapter number 18
Book title
Protein Engineering
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7366-8_18
Pubmed ID
Book ISBNs
978-1-4939-7364-4, 978-1-4939-7366-8
Authors

Fabrice Gielen, Pierre-Yves Colin, Philip Mair, Florian Hollfelder, Gielen, Fabrice, Colin, Pierre-Yves, Mair, Philip, Hollfelder, Florian

Abstract

The success of ultrahigh-throughput screening experiments in directed evolution or functional metagenomics strongly depends on the availability of efficient technologies for the quantitative testing of a large number of variants. With advanced robotics, libraries of up to 10(5) clones can be screened per day as colonies on agar plates or cell lysates in microwell plates, albeit at high cost of capital, manpower and consumables. These cost considerations and the general need for high-throughput make miniaturization of assay volumes attractive. To provide a general solution to maintain genotype-phenotype linkage, biochemical assays have been compartmentalized into water-in-oil droplets. This chapter presents a microfluidic workflow that translates a frequently used screening procedure consisting of cytoplasmic/periplasmic protein expression and cell lysis to the single cell level in water-in-oil droplet compartments. These droplets are sorted based on reaction progress by fluorescence measurements at the picoliter scale.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 23%
Researcher 7 20%
Student > Bachelor 4 11%
Student > Master 3 9%
Student > Doctoral Student 2 6%
Other 2 6%
Unknown 9 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 26%
Agricultural and Biological Sciences 6 17%
Engineering 4 11%
Medicine and Dentistry 2 6%
Arts and Humanities 1 3%
Other 3 9%
Unknown 10 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 November 2018.
All research outputs
#6,807,997
of 23,007,053 outputs
Outputs from Methods in molecular biology
#2,033
of 13,159 outputs
Outputs of similar age
#136,427
of 442,275 outputs
Outputs of similar age from Methods in molecular biology
#190
of 1,498 outputs
Altmetric has tracked 23,007,053 research outputs across all sources so far. This one has received more attention than most of these and is in the 70th percentile.
So far Altmetric has tracked 13,159 research outputs from this source. They receive a mean Attention Score of 3.4. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,275 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.
We're also able to compare this research output to 1,498 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 87% of its contemporaries.