↓ Skip to main content

Lipids in Protein Misfolding

Overview of attention for book
Attention for Chapter 10: Role of Syndecans in Lipid Metabolism and Human Diseases.
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Role of Syndecans in Lipid Metabolism and Human Diseases.
Chapter number 10
Book title
Lipids in Protein Misfolding
Published in
Advances in experimental medicine and biology, January 2015
DOI 10.1007/978-3-319-17344-3_10
Pubmed ID
Book ISBNs
978-3-31-917343-6, 978-3-31-917344-3
Authors

Leonova, Elena I, Galzitskaya, Oxana V, Elena I. Leonova, Oxana V. Galzitskaya, Leonova, Elena I., Galzitskaya, Oxana V.

Abstract

Syndecans are transmembrane heparan sulfate proteoglycans involved in the regulation of cell growth, differentiation, adhesion, neuronal development, and lipid metabolism. Syndecans are expressed in a tissue-specific manner to facilitate diverse cellular processes. As receptors and co-receptors, syndecans provide promising therapeutic targets that bind to a variety of physiologically important ligands. Negatively charged glycosaminoglycan chains of syndecans, located in the extracellular compartment, are critical for such binding. Functions of syndecans are as diverse as their ligands. For example, hepatic syndecan-1 mediates clearance of triglyceride-rich lipoproteins. Syndecan-2 promotes localization of Alzheimer's amyloid Aβ peptide to the cell surface, which is proposed to contribute to amyloid plaque formation. Syndecan-3 helps co-localize the appetite-regulating melanocortin-4 receptor with its agonist, leading to an increased appetite. Finally, syndecan-4 initiates the capture of modified low-density lipoproteins by macrophages and thereby promotes the atheroma formation. We hypothesize that syndecan modifications such as desulfation of glycosaminoglycan chains may contribute to a wide range of diseases, from atherosclerosis to type 2 diabetes. At the same time, desulfated syndecans may have beneficial effects, as they can inhibit amyloid plaque formation or decrease the appetite. Despite considerable progress in understanding diverse functions of syndecans, the complex physiological roles of this intriguing family of proteoglycans are far from clear. Additional studies of syndecans may potentially help develop novel therapeutic approaches and diagnostic tools to alleviate complex human diseases such as cardiovascular and Alzheimer's diseases.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 37 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 32%
Student > Bachelor 5 13%
Researcher 5 13%
Student > Master 4 11%
Professor > Associate Professor 2 5%
Other 3 8%
Unknown 7 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 26%
Biochemistry, Genetics and Molecular Biology 9 24%
Medicine and Dentistry 5 13%
Chemistry 3 8%
Neuroscience 2 5%
Other 1 3%
Unknown 8 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 July 2015.
All research outputs
#18,418,694
of 22,816,807 outputs
Outputs from Advances in experimental medicine and biology
#3,314
of 4,950 outputs
Outputs of similar age
#255,853
of 353,112 outputs
Outputs of similar age from Advances in experimental medicine and biology
#164
of 272 outputs
Altmetric has tracked 22,816,807 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,950 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,112 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 272 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.