↓ Skip to main content

The 4D Nucleome: Genome Compartmentalization in an Evolutionary Context

Overview of attention for article published in Biochemistry, April 2018
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (66th percentile)
  • Good Attention Score compared to outputs of the same age and source (71st percentile)

Mentioned by

twitter
5 X users
wikipedia
1 Wikipedia page

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
81 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The 4D Nucleome: Genome Compartmentalization in an Evolutionary Context
Published in
Biochemistry, April 2018
DOI 10.1134/s000629791804003x
Pubmed ID
Authors

T. Cremer, M. Cremer, C. Cremer

Abstract

4D nucleome research aims to understand the impact of nuclear organization in space and time on nuclear functions, such as gene expression patterns, chromatin replication, and the maintenance of genome integrity. In this review we describe evidence that the origin of 4D genome compartmentalization can be traced back to the prokaryotic world. In cell nuclei of animals and plants chromosomes occupy distinct territories, built up from ~1 Mb chromatin domains, which in turn are composed of smaller chromatin subdomains and also form larger chromatin domain clusters. Microscopic evidence for this higher order chromatin landscape was strengthened by chromosome conformation capture studies, in particular Hi-C. This approach demonstrated ~1 Mb sized, topologically associating domains in mammalian cell nuclei separated by boundaries. Mutations, which destroy boundaries, can result in developmental disorders and cancer. Nucleosomes appeared first as tetramers in the Archaea kingdom and later evolved to octamers built up each from two H2A, two H2B, two H3, and two H4 proteins. Notably, nucleosomes were lost during the evolution of the Dinoflagellata phylum. Dinoflagellate chromosomes remain condensed during the entire cell cycle, but their chromosome architecture differs radically from the architecture of other eukaryotes. In summary, the conservation of fundamental features of higher order chromatin arrangements throughout the evolution of metazoan animals suggests the existence of conserved, but still unknown mechanism(s) controlling this architecture. Notwithstanding this conservation, a comparison of metazoans and protists also demonstrates species-specific structural and functional features of nuclear organization.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 81 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 81 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 22%
Researcher 12 15%
Student > Master 10 12%
Student > Bachelor 8 10%
Student > Doctoral Student 7 9%
Other 12 15%
Unknown 14 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 40 49%
Agricultural and Biological Sciences 16 20%
Physics and Astronomy 6 7%
Computer Science 2 2%
Immunology and Microbiology 1 1%
Other 2 2%
Unknown 14 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 July 2019.
All research outputs
#6,932,988
of 25,382,440 outputs
Outputs from Biochemistry
#6,594
of 22,293 outputs
Outputs of similar age
#107,414
of 324,262 outputs
Outputs of similar age from Biochemistry
#45
of 165 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 72nd percentile.
So far Altmetric has tracked 22,293 research outputs from this source. They receive a mean Attention Score of 4.4. This one has gotten more attention than average, scoring higher than 70% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,262 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.
We're also able to compare this research output to 165 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.