↓ Skip to main content

Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP)

Overview of attention for book
Cover of 'Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP)'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Clinical Forms and Animal Models of Hypophosphatasia
  3. Altmetric Badge
    Chapter 2 Molecular Genetics of Hypophosphatasia and Phenotype-Genotype Correlations
  4. Altmetric Badge
    Chapter 3 Genetically Modified Mice for Studying TNAP Function
  5. Altmetric Badge
    Chapter 4 Tissue-Nonspecific Alkaline Phosphatase in the Developing Brain and in Adult Neurogenesis
  6. Altmetric Badge
    Chapter 5 Rediscovering TNAP in the Brain: A Major Role in Regulating the Function and Development of the Cerebral Cortex.
  7. Altmetric Badge
    Chapter 6 The Retinal TNAP.
  8. Altmetric Badge
    Chapter 7 Tissue Non-specific Alkaline Phosphatase (TNAP) in Vessels of the Brain
  9. Altmetric Badge
    Chapter 8 What Can We Learn About the Neural Functions of TNAP from Studies on Other Organs and Tissues?
  10. Altmetric Badge
    Chapter 9 TNAP, an Essential Player in Membrane Lipid Rafts of Neuronal Cells
  11. Altmetric Badge
    Chapter 10 Signal Transduction Pathways of TNAP: Molecular Network Analyses.
  12. Altmetric Badge
    Chapter 11 Vitamin B-6 Metabolism and Interactions with TNAP
  13. Altmetric Badge
    Chapter 12 Tetramisole and Levamisole Suppress Neuronal Activity Independently from Their Inhibitory Action on Tissue Non-specific Alkaline Phosphatase in Mouse Cortex.
  14. Altmetric Badge
    Chapter 13 TNAP and Pain Control
  15. Altmetric Badge
    Chapter 14 Neurological Symptoms of Hypophosphatasia
  16. Altmetric Badge
    Chapter 15 Recombinant Enzyme Replacement Therapy in Hypophosphatasia
  17. Altmetric Badge
    Chapter 16 Neurogenetic Aspects of Hyperphosphatasia in Mabry Syndrome
  18. Altmetric Badge
    Chapter 17 The Role of Tissue Non-specific Alkaline Phosphatase (TNAP) in Neurodegenerative Diseases: Alzheimer's Disease in the Focus.
  19. Altmetric Badge
    Chapter 18 TNAP Plays a Key Role in Neural Differentiation as well as in Neurodegenerative Disorders.
Attention for Chapter 2: Molecular Genetics of Hypophosphatasia and Phenotype-Genotype Correlations
Altmetric Badge

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Molecular Genetics of Hypophosphatasia and Phenotype-Genotype Correlations
Chapter number 2
Book title
Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP)
Published in
Sub cellular biochemistry, January 2015
DOI 10.1007/978-94-017-7197-9_2
Pubmed ID
Book ISBNs
978-9-40-177196-2, 978-9-40-177197-9
Authors

Etienne Mornet, Mornet, Etienne

Abstract

Hypophosphatasia (HPP) is due to deficient activity of the tissue-nonspecific isoenzyme of alkaline phosphatase (TNAP). This enzyme cleaves extracellular substrates inorganic pyrophosphates (PPi) , pyridoxal-5'-phosphate (PLP), phosphoethanolamine (PEA) and nucleotides , and probably other substrates not yet identified. During the last 15 years the role of TNAP in mineralization, and to a less degree in brain, has been investigated, providing hypotheses and explanations for both bone and neuronal HPP phenotypes. ALPL, the gene encoding TNAP, is subject to many mutations, mostly missense mutations . A few number of mutations are recurrently found and may be quite frequent in particular populations. This reflects founder effects. The great variety of mutations results in a great number of compound heterozygous genotypes and in highly variable clinical expressivity. A good correlation was observed between the severity of the disease and in vitro enzymatic activity of the mutant protein measured after site-directed mutagenesis. Many missense mutations found in severe hypophosphatasia produced a mutant protein that failed to reach the cell membrane , was accumulated in the cis-Golgi and was subsequently degraded in the proteasome. Missense mutations located in the catalytic site or in the homodimer interface were often shown by site-directed mutagenesis to have a dominant negative effect. Currently molecular diagnosis of HPP is based on the sequencing of the coding sequence of ALPL that allows detection of approximately 95 % of mutations in severe cases. In addition, other genes, especially genes encoding proteins involved in the regulation of extracellular PPi concentration, could modify the phenotype (modifier genes).

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 41 100%

Demographic breakdown

Readers by professional status Count As %
Other 11 27%
Student > Bachelor 7 17%
Researcher 4 10%
Student > Doctoral Student 3 7%
Student > Master 3 7%
Other 3 7%
Unknown 10 24%
Readers by discipline Count As %
Medicine and Dentistry 18 44%
Biochemistry, Genetics and Molecular Biology 5 12%
Agricultural and Biological Sciences 3 7%
Nursing and Health Professions 2 5%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Other 1 2%
Unknown 11 27%