↓ Skip to main content

Combination of in situ metathesis reaction with a novel “magnetic effervescent tablet-assisted ionic liquid dispersive microextraction” for the determination of endogenous steroids in human fluids

Overview of attention for article published in Analytical & Bioanalytical Chemistry, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 tweeters

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Combination of in situ metathesis reaction with a novel “magnetic effervescent tablet-assisted ionic liquid dispersive microextraction” for the determination of endogenous steroids in human fluids
Published in
Analytical & Bioanalytical Chemistry, March 2018
DOI 10.1007/s00216-018-0973-2
Pubmed ID
Authors

Jia Wu, Zilin Xu, Yixuan Pan, Yi Shi, Xiujie Bao, Jun Li, Yu Tong, Han Tang, Shuyan Ma, Xuedong Wang, Jianxin Lyu

Abstract

Herein, a novel magnetic effervescence tablet-assisted microextraction coupled to in situ metathesis reaction of ionic liquid (IS-META-ILDM) is presented for the determination of four endogenous steroids in human urine, pregnant women's blood, and fetal umbilical cord blood. The magnetic effervescent tablets, which were composed of Fe3O4 nanoparticles, sodium carbonate (alkaline source), and tartaric acid (acidic source), were used to disperse the extractant and for convenient magnetic separation. After the effervescent reaction, in situ reaction between NH4PF6 and [C6MIM]BF4 was adopted to change hydrophilic ionic liquid to hydrophobic liquid, which could be separated from the aqueous phase. The newly developed method has three obvious advantages: (1) combination of effervescent dispersion and magnetic nanoparticles' retrieval is cost-effective and the dispersion and collection of the extractant can be completed almost simultaneously; (2) as compared to temperature-controlled ionic liquid dispersive microextraction and cold-induced solidified microextraction, this method avoids a heating and cooling process which significantly reduces the extraction time and energy cost; and (3) the combination of adsorption by magnetic nanoparticles with extraction by in situ metathesis reaction easily produces high recoveries for target analytes. The optimized composition of effervescent tablet and experimental parameters are as follows: 0.64 g mixture of sodium carbonate and tartaric acid, 7 mg of Fe3O4 (20 nm) as magnetic sorbents, 40 μL of [C6MIM]BF4 as the extraction solvent, 0.15 g NH4PF6, and 300 μL of elution solvent. Under the optimized conditions, the newly developed method provided high extraction recoveries (90.0-118.5%) and low LODs (0.14-0.17 μg L-1) in urine and blood samples. In total, this IS-META-ILDM method provided high extraction efficiency, fast and convenient separation, and underutilization of any organic solvent, and thus it has great potential for the determination of trace endogenous steroids in complex human fluids. Graphical abstract The newly developed method has three obvious advantages: combination of effervescent dispersion and magnetic nanoparticles' retrieval is cost-effective and the dispersion and collection of the extractant can be completed almost simultaneously. It avoids a heating and cooling process which significantly reduces the extraction time and energy cost and easily produces high recoveries for target analytes.

Twitter Demographics

The data shown below were collected from the profiles of 2 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 2 33%
Student > Postgraduate 1 17%
Other 1 17%
Student > Ph. D. Student 1 17%
Researcher 1 17%
Other 0 0%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 33%
Agricultural and Biological Sciences 1 17%
Chemical Engineering 1 17%
Social Sciences 1 17%
Medicine and Dentistry 1 17%
Other 0 0%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 April 2018.
All research outputs
#9,810,291
of 12,799,521 outputs
Outputs from Analytical & Bioanalytical Chemistry
#2,616
of 4,748 outputs
Outputs of similar age
#191,875
of 274,397 outputs
Outputs of similar age from Analytical & Bioanalytical Chemistry
#63
of 142 outputs
Altmetric has tracked 12,799,521 research outputs across all sources so far. This one is in the 20th percentile – i.e., 20% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,748 research outputs from this source. They receive a mean Attention Score of 2.5. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 274,397 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 142 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.