↓ Skip to main content

The Cyst-Dividing Bacterium Ramlibacter tataouinensis TTB310 Genome Reveals a Well-Stocked Toolbox for Adaptation to a Desert Environment

Overview of attention for article published in PLOS ONE, September 2011
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

wikipedia
4 Wikipedia pages

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
76 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Cyst-Dividing Bacterium Ramlibacter tataouinensis TTB310 Genome Reveals a Well-Stocked Toolbox for Adaptation to a Desert Environment
Published in
PLOS ONE, September 2011
DOI 10.1371/journal.pone.0023784
Pubmed ID
Authors

Gilles De Luca, Mohamed Barakat, Philippe Ortet, Sylvain Fochesato, Cécile Jourlin-Castelli, Mireille Ansaldi, Béatrice Py, Gwennaele Fichant, Pedro M. Coutinho, Romé Voulhoux, Olivier Bastien, Eric Maréchal, Bernard Henrissat, Yves Quentin, Philippe Noirot, Alain Filloux, Vincent Méjean, Michael S. DuBow, Frédéric Barras, Valérie Barbe, Jean Weissenbach, Irina Mihalcescu, André Verméglio, Wafa Achouak, Thierry Heulin

Abstract

Ramlibacter tataouinensis TTB310(T) (strain TTB310), a betaproteobacterium isolated from a semi-arid region of South Tunisia (Tataouine), is characterized by the presence of both spherical and rod-shaped cells in pure culture. Cell division of strain TTB310 occurs by the binary fission of spherical "cyst-like" cells ("cyst-cyst" division). The rod-shaped cells formed at the periphery of a colony (consisting mainly of cysts) are highly motile and colonize a new environment, where they form a new colony by reversion to cyst-like cells. This unique cell cycle of strain TTB310, with desiccation tolerant cyst-like cells capable of division and desiccation sensitive motile rods capable of dissemination, appears to be a novel adaptation for life in a hot and dry desert environment. In order to gain insights into strain TTB310's underlying genetic repertoire and possible mechanisms responsible for its unusual lifestyle, the genome of strain TTB310 was completely sequenced and subsequently annotated. The complete genome consists of a single circular chromosome of 4,070,194 bp with an average G+C content of 70.0%, the highest among the Betaproteobacteria sequenced to date, with total of 3,899 predicted coding sequences covering 92% of the genome. We found that strain TTB310 has developed a highly complex network of two-component systems, which may utilize responses to light and perhaps a rudimentary circadian hourglass to anticipate water availability at the dew time in the middle/end of the desert winter nights and thus direct the growth window to cyclic water availability times. Other interesting features of the strain TTB310 genome that appear to be important for desiccation tolerance, including intermediary metabolism compounds such as trehalose or polyhydroxyalkanoate, and signal transduction pathways, are presented and discussed.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 76 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 2 3%
Mexico 1 1%
Unknown 73 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 26%
Researcher 16 21%
Student > Doctoral Student 6 8%
Other 5 7%
Professor 5 7%
Other 12 16%
Unknown 12 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 32 42%
Environmental Science 10 13%
Biochemistry, Genetics and Molecular Biology 8 11%
Immunology and Microbiology 2 3%
Medicine and Dentistry 2 3%
Other 6 8%
Unknown 16 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 February 2019.
All research outputs
#7,454,951
of 22,790,780 outputs
Outputs from PLOS ONE
#88,772
of 194,543 outputs
Outputs of similar age
#43,459
of 125,208 outputs
Outputs of similar age from PLOS ONE
#1,035
of 2,528 outputs
Altmetric has tracked 22,790,780 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 194,543 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.1. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 125,208 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 2,528 others from the same source and published within six weeks on either side of this one. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.