↓ Skip to main content

Reproducible, high-yielding, biological caproate production from food waste using a single-phase anaerobic reactor system

Overview of attention for article published in Biotechnology for Biofuels, April 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)

Mentioned by

twitter
4 tweeters

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
81 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Reproducible, high-yielding, biological caproate production from food waste using a single-phase anaerobic reactor system
Published in
Biotechnology for Biofuels, April 2018
DOI 10.1186/s13068-018-1101-4
Pubmed ID
Authors

Corine Orline Nzeteu, Anna Christine Trego, Florence Abram, Vincent O’Flaherty

Abstract

Nowadays, the vast majority of chemicals are either synthesised from fossil fuels or are extracted from agricultural commodities. However, these production approaches are not environmentally and economically sustainable, as they result in the emission of greenhouse gases and they may also compete with food production. Because of the global agreement to reduce greenhouse gas emissions, there is an urgent interest in developing alternative sustainable sources of chemicals. In recent years, organic waste streams have been investigated as attractive and sustainable feedstock alternatives. In particular, attention has recently focused on the production of caproate from mixed culture fermentation of low-grade organic residues. The current approaches for caproate synthesis from organic waste are not economically attractive, as they involve the use of two-stage anaerobic digestion systems and the supplementation of external electron donors, both of which increase its production costs. This study investigates the feasibility of producing caproate from food waste (FW) without the supplementation of external electron donors using a single-phase reactor system. Replicate leach-bed reactors were operated on a semi-continuous mode at organic loading of 80 g VS FW l-1 and at solid retention times of 14 and 7 days. Fermentation, rather than hydrolysis, was the limiting step for caproate production. A higher caproate production yield 21.86 ± 0.57 g COD l-1 was achieved by diluting the inoculating leachate at the beginning of each run and by applying a leachate recirculation regime. The mixed culture batch fermentation of the FW leachate was able to generate 23 g caproate COD l-1 (10 g caproate l-1), at a maximum rate of 3 g caproate l-1 day-1 under high H2 pressure. Lactate served as the electron donor and carbon source for the synthesis of caproate. Microbial community analysis suggested that neither Clostridium kluyveri nor Megasphaera elsdenii, which are well-characterised caproate producers in bioreactors systems, were strongly implicated in the synthesis of caproate, but that rather Clostridium sp. with 99% similarity to Ruminococcaceae bacterium CPB6 and Clostridium sp. MT1 likely played key roles in the synthesis of caproate. This finding indicates that the microbial community capable of caproate synthesis could be diverse and may therefore help in maintaining a stable and robust process. These results indicate that future, full-scale, high-rate caproate production from carbohydrate-rich wastes, associated with biogas recovery, could be envisaged.

Twitter Demographics

The data shown below were collected from the profiles of 4 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 81 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 81 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 22%
Student > Master 17 21%
Researcher 13 16%
Student > Bachelor 8 10%
Student > Doctoral Student 6 7%
Other 9 11%
Unknown 10 12%
Readers by discipline Count As %
Environmental Science 20 25%
Engineering 13 16%
Agricultural and Biological Sciences 11 14%
Chemical Engineering 5 6%
Biochemistry, Genetics and Molecular Biology 5 6%
Other 9 11%
Unknown 18 22%

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 June 2018.
All research outputs
#9,409,760
of 17,095,353 outputs
Outputs from Biotechnology for Biofuels
#563
of 1,224 outputs
Outputs of similar age
#131,358
of 286,953 outputs
Outputs of similar age from Biotechnology for Biofuels
#1
of 1 outputs
Altmetric has tracked 17,095,353 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,224 research outputs from this source. They receive a mean Attention Score of 4.5. This one has gotten more attention than average, scoring higher than 52% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 286,953 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them