↓ Skip to main content

Ribonucleic acid (RNA) biosynthesis in human cancer

Overview of attention for article published in Cancer Cell International, February 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Ribonucleic acid (RNA) biosynthesis in human cancer
Published in
Cancer Cell International, February 2015
DOI 10.1186/s12935-015-0167-3
Pubmed ID
Authors

Omar S Hajjawi

Abstract

In many respects, the most remarkable chemical substances within the genome of eukaryotic cells are remarkable proteins which are the critical structural and functional units of living cells. The specifications for everything that goes in the cell are natural digital-to-digital decoding process in an archive sequence by deoxyribonucleic acid (DNA) and an articulate construction by ribonucleic acid (RNA). The products of DNA transcription are long polymers of ribonucleotides rather than deoxyribonucleotides and are termed ribonucleic acids. Certain deoxyribonucleotide sequences, or genes, give rise to transfer RNA (tRNA) and other ribosomal RNA (rRNA) when transcribed. The ribonucleotide sequences fold extensively and rRNA is associated with specific proteins to yield the essential cell components, ribosomes. Transcription of other special sequences yields messenger RNAs (mRNAs) that contain ribonucleotide sequences that will be ultimately translated into new types of amino acid sequences of functional cellular protein molecules. This switch to a different variety of cellular molecular sequences is complex, but each sequence of the three ribonucleotides specifies the insertion of one particular amino acid into the polypeptide chain under production. Whilst mRNA is considered the vehicle by which genetic information is transmitted from the genome and allocated in the appropriate cytoplasmic sites for translation into protein via cap-dependent mechanism, the actual translation depends also on the presence of other so-called household and luxury protein molecules. Recent evidence suggests RNA species are required at initiation, because treatment of cells with antibiotics or drugs that inhibit RNA synthesis cause a decrease in protein synthesis. The rRNA is necessary as a structural constituent of the ribosomes upon which translation takes place, whereas tRNA is necessary as an adaptor in amino acid activation and elongation protein chains to ribosomes. In this article, we review malignant tumor, with stem like properties, and recent technical advances into the phenomenon of micro-particles and micro-vesicles containing cell-free nucleic acids that circulate plasma. New areas of research have been opened into screening tumor telomerase progression, prognosis of aptamers targeting cell surface, monitoring the efficacy of anticancer therapies, oncogenic transformation of host cell, and RNA polymerases role in the cell cycle progression and differentiation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
China 1 2%
Canada 1 2%
Unknown 44 94%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 12 26%
Student > Ph. D. Student 7 15%
Other 6 13%
Researcher 5 11%
Student > Master 2 4%
Other 5 11%
Unknown 10 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 21%
Biochemistry, Genetics and Molecular Biology 9 19%
Medicine and Dentistry 6 13%
Nursing and Health Professions 3 6%
Business, Management and Accounting 1 2%
Other 8 17%
Unknown 10 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 February 2015.
All research outputs
#20,655,488
of 25,373,627 outputs
Outputs from Cancer Cell International
#1,548
of 2,231 outputs
Outputs of similar age
#198,870
of 269,366 outputs
Outputs of similar age from Cancer Cell International
#13
of 19 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,231 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.2. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 269,366 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 19 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.