↓ Skip to main content

Targeting sphingosine-1-phosphate lyase as an anabolic therapy for bone loss

Overview of attention for article published in Nature Medicine, April 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)

Citations

dimensions_citation
92 Dimensions

Readers on

mendeley
98 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Targeting sphingosine-1-phosphate lyase as an anabolic therapy for bone loss
Published in
Nature Medicine, April 2018
DOI 10.1038/s41591-018-0005-y
Pubmed ID
Authors

Sarah Weske, Mithila Vaidya, Alina Reese, Karin von Wnuck Lipinski, Petra Keul, Julia K Bayer, Jens W Fischer, Ulrich Flögel, Jens Nelsen, Matthias Epple, Marta Scatena, Edzard Schwedhelm, Marcus Dörr, Henry Völzke, Eileen Moritz, Anke Hannemann, Bernhard H Rauch, Markus H Gräler, Gerd Heusch, Bodo Levkau

Abstract

Sphingosine-1-phosphate (S1P) signaling influences bone metabolism, but its therapeutic potential in bone disorders has remained unexplored. We show that raising S1P levels in adult mice through conditionally deleting or pharmacologically inhibiting S1P lyase, the sole enzyme responsible for irreversibly degrading S1P, markedly increased bone formation, mass and strength and substantially decreased white adipose tissue. S1P signaling through S1P2 potently stimulated osteoblastogenesis at the expense of adipogenesis by inversely regulating osterix and PPAR-γ, and it simultaneously inhibited osteoclastogenesis by inducing osteoprotegerin through newly discovered p38-GSK3β-β-catenin and WNT5A-LRP5 pathways. Accordingly, S1P2-deficient mice were osteopenic and obese. In ovariectomy-induced osteopenia, S1P lyase inhibition was as effective as intermittent parathyroid hormone (iPTH) treatment in increasing bone mass and was superior to iPTH in enhancing bone strength. Furthermore, lyase inhibition in mice successfully corrected severe genetic osteoporosis caused by osteoprotegerin deficiency. Human data from 4,091 participants of the SHIP-Trend population-based study revealed a positive association between serum levels of S1P and bone formation markers, but not resorption markers. Furthermore, serum S1P levels were positively associated with serum calcium , negatively with PTH , and curvilinearly with body mass index. Bone stiffness, as determined through quantitative ultrasound, was inversely related to levels of both S1P and the bone formation marker PINP, suggesting that S1P stimulates osteoanabolic activity to counteract decreasing bone quality. S1P-based drugs should be considered as a promising therapeutic avenue for the treatment of osteoporotic diseases.

X Demographics

X Demographics

The data shown below were collected from the profiles of 20 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 98 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 98 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 14%
Student > Ph. D. Student 13 13%
Student > Doctoral Student 12 12%
Student > Bachelor 10 10%
Professor 7 7%
Other 14 14%
Unknown 28 29%
Readers by discipline Count As %
Medicine and Dentistry 22 22%
Biochemistry, Genetics and Molecular Biology 17 17%
Agricultural and Biological Sciences 7 7%
Pharmacology, Toxicology and Pharmaceutical Science 6 6%
Neuroscience 6 6%
Other 9 9%
Unknown 31 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 25. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 September 2019.
All research outputs
#1,309,961
of 23,043,346 outputs
Outputs from Nature Medicine
#2,709
of 8,549 outputs
Outputs of similar age
#28,499
of 296,868 outputs
Outputs of similar age from Nature Medicine
#53
of 68 outputs
Altmetric has tracked 23,043,346 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 8,549 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 98.5. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 296,868 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 68 others from the same source and published within six weeks on either side of this one. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.