↓ Skip to main content

Plasmodium vivax and Plasmodium falciparum infection dynamics: re-infections, recrudescences and relapses

Overview of attention for article published in Malaria Journal, April 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)

Mentioned by

twitter
12 tweeters

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
72 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Plasmodium vivax and Plasmodium falciparum infection dynamics: re-infections, recrudescences and relapses
Published in
Malaria Journal, April 2018
DOI 10.1186/s12936-018-2318-1
Pubmed ID
Authors

Michael T. White, Stephan Karl, Cristian Koepfli, Rhea J. Longley, Natalie E. Hofmann, Rahel Wampfler, Ingrid Felger, Tom Smith, Wang Nguitragool, Jetsumon Sattabongkot, Leanne Robinson, Azra Ghani, Ivo Mueller

Abstract

In malaria endemic populations, complex patterns of Plasmodium vivax and Plasmodium falciparum blood-stage infection dynamics may be observed. Genotyping samples from longitudinal cohort studies for merozoite surface protein (msp) variants increases the information available in the data, allowing multiple infecting parasite clones in a single individual to be identified. msp genotyped samples from two longitudinal cohorts in Papua New Guinea (PNG) and Thailand were analysed using a statistical model where the times of acquisition and clearance of each clone in every individual were estimated using a process of data augmentation. For the populations analysed, the duration of blood-stage P. falciparum infection was estimated as 36 (95% Credible Interval (CrI): 29, 44) days in PNG, and 135 (95% CrI 94, 191) days in Thailand. Experiments on simulated data indicated that it was not possible to accurately estimate the duration of blood-stage P. vivax infections due to the lack of identifiability between a single blood-stage infection and multiple, sequential blood-stage infections caused by relapses. Despite this limitation, the method and data point towards short duration of blood-stage P. vivax infection with a lower bound of 24 days in PNG, and 29 days in Thailand. On an individual level, P. vivax recurrences cannot be definitively classified into re-infections, recrudescences or relapses, but a probabilistic relapse phenotype can be assigned to each P. vivax sample, allowing investigation of the association between epidemiological covariates and the incidence of relapses. The statistical model developed here provides a useful new tool for in-depth analysis of malaria data from longitudinal cohort studies, and future application to data sets with multi-locus genotyping will allow more detailed investigation of infection dynamics.

Twitter Demographics

The data shown below were collected from the profiles of 12 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 72 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 72 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 21%
Student > Ph. D. Student 13 18%
Student > Master 11 15%
Professor 4 6%
Student > Bachelor 4 6%
Other 11 15%
Unknown 14 19%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 14%
Medicine and Dentistry 10 14%
Immunology and Microbiology 9 13%
Mathematics 4 6%
Agricultural and Biological Sciences 4 6%
Other 15 21%
Unknown 20 28%

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 January 2019.
All research outputs
#2,487,105
of 14,123,515 outputs
Outputs from Malaria Journal
#683
of 4,075 outputs
Outputs of similar age
#71,041
of 276,331 outputs
Outputs of similar age from Malaria Journal
#1
of 1 outputs
Altmetric has tracked 14,123,515 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,075 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.6. This one has done well, scoring higher than 83% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 276,331 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them