↓ Skip to main content

An intron-containing, heat-inducible stress-70 gene in the millipede Tachypodoiulus niger (Julidae, Diplopoda)

Overview of attention for article published in Cell Stress and Chaperones, January 2014
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
2 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An intron-containing, heat-inducible stress-70 gene in the millipede Tachypodoiulus niger (Julidae, Diplopoda)
Published in
Cell Stress and Chaperones, January 2014
DOI 10.1007/s12192-014-0494-7
Pubmed ID
Authors

Thomas Knigge, Lutz Bachmann, Heinz-R. Köhler

Abstract

The highly conserved part of the nucleotide-binding domain of the hsp70 gene family was amplified from the soil diplopod Tachypodoiulus niger (Julidae, Diplopoda). Genomic DNA yielded 701, 549 and 540 bp sequences, whereas cDNA from heat shocked animals produced only one distinct fragment of 543 bp. The sequences could be classified as a 70 kDa heat shock protein (hsp70), the corresponding 70 kDa heat shock cognate (hsc70) and a glucose-related hsp70 homologue (grp78). Comparisons of genomic and cDNA sequences of hsc70 identified two introns within the consensus sequence. Generally, stress-70 expression levels were low, which hampered successful RT-PCR and subsequent subcloning. Following experimental heat shock, however, the spliced hsc70 was amplified predominantly, instead of its inducible homologue hsp70. This finding suggests that microevolution in this soil-dwelling arthropod is directed towards low constitutive stress-70 levels and that the capacity for stress-70 induction presumably is limited. hsc70, albeit having introns, apparently is inducible and contributes to the stress-70 response.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 2 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 2 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 1 50%
Unknown 1 50%
Readers by discipline Count As %
Agricultural and Biological Sciences 1 50%
Unknown 1 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 September 2014.
All research outputs
#22,759,802
of 25,374,917 outputs
Outputs from Cell Stress and Chaperones
#578
of 698 outputs
Outputs of similar age
#281,579
of 321,172 outputs
Outputs of similar age from Cell Stress and Chaperones
#3
of 4 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 698 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,172 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 4 others from the same source and published within six weeks on either side of this one.