↓ Skip to main content

Characterization of HIV-1 entry inhibitors with broad activity against R5 and X4 viral strains

Overview of attention for article published in Journal of Translational Medicine, April 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

twitter
2 X users

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Characterization of HIV-1 entry inhibitors with broad activity against R5 and X4 viral strains
Published in
Journal of Translational Medicine, April 2015
DOI 10.1186/s12967-015-0461-9
Pubmed ID
Authors

Francesca Sironi, Mauro Malnati, Nicola Mongelli, Paolo Cozzi, Christina Guzzo, Silvia Ghezzi, Carles Martínez-Romero, Adolfo García-Sastre, Paolo Lusso, Daniela Jabes, Priscilla Biswas

Abstract

Combined antiretroviral therapy has drastically reduced mortality and morbidity of HIV-infected individuals. Nevertheless long-term toxicity and appearance of viral resistance hampers the prolonged effectiveness of combination therapy, requiring a continuous input of drugs to replace those utilized in combination regimens. We here investigated the anti-HIV activity of novel derivatives of the suradista chemical class. Compounds were tested on acute HIV-1 infection of activated peripheral blood mononuclear cells. HIV production was monitored by enzyme-linked immunosorbent assay measuring the protein p24 released in culture supernatants. Fusion assays were carried out to study the mechanism of action of these compounds. A modified version of a previously established recombinant vaccinia virus-based assay was used measuring activation of a reporter gene upon fusion of two distinct cell populations. Flow cytometry was performed in competition assays for the binding of several antibodies targeting different sites of the viral envelope glycoprotein gp120, or the receptor CD4, or the coreceptors CXCR4 and CCR5. Four compounds inhibited replication of a prototypic R5 (BaL) and X4 (IIIB) laboratory-adapted HIV-1 strain at low micromolar concentrations, in the absence of cytotoxicity. Approximately a ten fold greater activity was achieved against the X4 as compared to the R5 strain. The compounds blocked X4 and R5 HIV-1 fusion, a step of viral entry. This activity appeared specific for HIV-1, as entry of human herpesvirus 6 (HHV-6) and influenza virus was not substantially affected. Further investigation of the inhibitory mechanism revealed that these new molecules target the viral envelope, rather than the coreceptors, as previously shown for a congener of the same class characterized by a long plasmatic half-life. Indeed ND-4043, the most active compound, specifically competed with binding of monoclonal antibodies against the CD4-binding site (CD4-BS) and coreceptor-binding site (CoR-BS) of gp120. These compounds displayed broad anti-HIV activity, as they inhibited various primary R5, X4 and, importantly, dualtropic R5X4 HIV-1 isolates. Of the four derivatives tested, the dimeric compounds were consistently more potent than the monomeric ones. Given their unique features, these molecules represent promising candidates for further development and exploitation as anti-HIV therapeutics.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Denmark 1 5%
Argentina 1 5%
Unknown 17 89%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 21%
Researcher 3 16%
Student > Ph. D. Student 3 16%
Student > Bachelor 2 11%
Other 1 5%
Other 2 11%
Unknown 4 21%
Readers by discipline Count As %
Medicine and Dentistry 4 21%
Agricultural and Biological Sciences 3 16%
Psychology 2 11%
Biochemistry, Genetics and Molecular Biology 1 5%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Other 4 21%
Unknown 4 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 May 2015.
All research outputs
#13,431,543
of 22,797,621 outputs
Outputs from Journal of Translational Medicine
#1,585
of 3,988 outputs
Outputs of similar age
#127,897
of 263,845 outputs
Outputs of similar age from Journal of Translational Medicine
#35
of 80 outputs
Altmetric has tracked 22,797,621 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,988 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.5. This one has gotten more attention than average, scoring higher than 57% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,845 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 80 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.