↓ Skip to main content

A Pseudomonas fluorescens type 6 secretion system is related to mucoidy, motility and bacterial competition

Overview of attention for article published in BMC Microbiology, March 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Pseudomonas fluorescens type 6 secretion system is related to mucoidy, motility and bacterial competition
Published in
BMC Microbiology, March 2015
DOI 10.1186/s12866-015-0405-9
Pubmed ID
Authors

Victorien Decoin, Mathias Gallique, Corinne Barbey, Francois Le Mauff, Cecile Duclairoir Poc, Marc GJ Feuilloley, Nicole Orange, Annabelle Merieau

Abstract

Pseudomonas fluorescens strain MFE01 secretes in abundance two Hcp proteins (haemolysin co-regulated proteins) Hcp1 and Hcp2, characteristic of a functional type 6 secretion system. Phenotypic studies have shown that MFE01 has antibacterial activity against a wide range of competitor bacteria, including rhizobacteria and clinically relevant bacteria. Mutagenesis of the hcp2 gene abolishes or reduces, depending on the target strain, MFE01 antibacterial activity. Hcp1, encoded by hcp1, may also be involved in bacterial competition. We therefore assessed the contribution of Hcp1 to competition of P. fluorescens MFE01 with other bacteria, by studying MFE01 mutants in various competitive conditions. Mutation of hcp1 had pleiotropic effects on the MFE01 phenotype. It affected mucoidy of the strain and its motility and was associated with the loss of flagella, which were restored by introduction of plasmid expressing hcp1. The hcp1 mutation had no effect on bacterial competition during incubation in solid medium. MFE01 was able to sequester another P. fluorescens strain, MFN1032, under swimming conditions. The hcp2 mutant but not the hcp1 mutant conserved this ability. In competition assays on swarming medium, MFE01 impaired MFN1032 swarming and displayed killing activity. The hcp2 mutant, but not the hcp1 mutant, was able to reduce MFN1032 swarming. The hcp1 and hcp2 mutations each abolished killing activity in these conditions. Our findings implicate type 6 secretion of Hcp1 in mucoidy and motility of MFE01. Our study is the first to establish a link between a type 6 secretion system and flagellin and mucoidy. Hcp1 also appears to contribute to limiting the motility of prey cells to facilitate killing mediated by Hcp2. Inhibition of motility associated with an Hcp protein has never been described. With this work, we illustrate the importance and versatility of type 6 secretion systems in bacterial adaptation and fitness.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 4 12%
Student > Bachelor 4 12%
Professor > Associate Professor 4 12%
Student > Ph. D. Student 4 12%
Professor 2 6%
Other 3 9%
Unknown 13 38%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 21%
Biochemistry, Genetics and Molecular Biology 5 15%
Immunology and Microbiology 4 12%
Environmental Science 2 6%
Engineering 1 3%
Other 0 0%
Unknown 15 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 August 2015.
All research outputs
#17,758,492
of 22,805,349 outputs
Outputs from BMC Microbiology
#2,006
of 3,188 outputs
Outputs of similar age
#180,077
of 263,417 outputs
Outputs of similar age from BMC Microbiology
#34
of 56 outputs
Altmetric has tracked 22,805,349 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,188 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,417 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 56 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.