↓ Skip to main content

Synthesis and characterization of tumor-targeted copolymer nanocarrier modified by transferrin

Overview of attention for article published in Drug Design, Development and Therapy, May 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Synthesis and characterization of tumor-targeted copolymer nanocarrier modified by transferrin
Published in
Drug Design, Development and Therapy, May 2015
DOI 10.2147/dddt.s80948
Pubmed ID
Authors

Ran Liu, Yonglu Wang, Xueming Li, Wen Bao, Guohua Xia, Wei Chen, Jian Cheng, Yuanlong Xu, Liting Guo, Baoan Chen

Abstract

To increase the encapsulation of hydrophilic antitumor agent daunorubicin (DNR) and multidrug resistance reversal agent tetrandrine (Tet) in the drug delivery system of nano-particles (NPs), a functional copolymer NP composed of poly(lactic-co-glycolic acid) (PLGA), poly-L-lysine (PLL), and polyethylene glycol (PEG) was synthesized and then loaded with DNR and Tet simultaneously to construct DNR/Tet-PLGA-PLL-PEG-NPs using a modified double-emulsion solvent evaporation/diffusion method. And to increase the targeted antitumor effect, DNR/Tet-PLGA-PLL-PEG-NPs were further modified with transferrin (Tf) due to its specific binding to Tf receptors (TfR), which is highly expressed on the surface of tumor cells. In this study, the influence of the diversity of formulation parameters was investigated systematically, such as drug loading, mean particle size, molecular weight, the concentration of PLGA-PLL-PEG-Tf, volume ratio of acetone to dichloromethane, the concentration of polyvinyl alcohol (PVA) in the external aqueous phase, the volume ratio of the internal aqueous phase to the external aqueous phase, and the type of surfactants in the internal aqueous phase. Meanwhile, its possible effect on cell viability was evaluated. Our results showed that the regular spherical DNR/Tet-PLGA-PLL-PEG-Tf-NPs with a smooth surface, a relatively low polydispersity index, and a diameter of 213.0±12.0 nm could be produced. The encapsulation efficiency was 70.23%±1.91% for DNR and 86.5%±0.70% for Tet, the moderate drug loading was 3.63%±0.15% for DNR and 4.27%±0.13% for Tet. Notably, the accumulated release of DNR and Tet could be sustained over 1 week, and the Tf content was 2.18%±0.04%. In cell viability tests, DNR/Tet-PLGA-PLL-PEG-Tf-NPs could inhibit the proliferation of K562/ADR cells in a dose-dependent manner, and the half maximal inhibitory concentration value (total drug) of DNR/Tet-PLGA-PLL-PEG-Tf-NPs was lower than that of DNR, a mixture of DNR and Tet, and DNR/Tet-PLGA-PLL-PEG-NPs. These results clearly indicate that the PLGA-PLL-PEG formulation is a potential drug delivery system for hydrophilic and hydrophobic drugs, and that Tf modification may increase its targeting properties.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 17%
Researcher 3 17%
Student > Ph. D. Student 3 17%
Student > Bachelor 2 11%
Other 1 6%
Other 1 6%
Unknown 5 28%
Readers by discipline Count As %
Agricultural and Biological Sciences 2 11%
Biochemistry, Genetics and Molecular Biology 2 11%
Medicine and Dentistry 2 11%
Pharmacology, Toxicology and Pharmaceutical Science 1 6%
Nursing and Health Professions 1 6%
Other 4 22%
Unknown 6 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 May 2015.
All research outputs
#22,756,649
of 25,371,288 outputs
Outputs from Drug Design, Development and Therapy
#1,754
of 2,268 outputs
Outputs of similar age
#239,358
of 278,911 outputs
Outputs of similar age from Drug Design, Development and Therapy
#79
of 99 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,268 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 278,911 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 99 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.