↓ Skip to main content

Lower versus higher oxygen concentrations titrated to target oxygen saturations during resuscitation of preterm infants at birth

Overview of attention for article published in Cochrane database of systematic reviews, May 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (94th percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

blogs
1 blog
twitter
64 tweeters
facebook
2 Facebook pages
wikipedia
1 Wikipedia page

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
109 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Lower versus higher oxygen concentrations titrated to target oxygen saturations during resuscitation of preterm infants at birth
Published in
Cochrane database of systematic reviews, May 2018
DOI 10.1002/14651858.cd010239.pub2
Pubmed ID
Authors

Kei Lui, Lisa J Jones, Jann P Foster, Peter G Davis, See Kwee Ching, Ju Lee Oei, David A Osborn

Abstract

Initial resuscitation with air is well tolerated by most infants born at term. However, the optimal fractional inspired oxygen concentration (FiO2 - proportion of the breathed air that is oxygen) targeted to oxygen saturation (SpO2 - an estimate of the amount of oxygen in the blood) for infants born preterm is unclear. To determine whether lower or higher initial oxygen concentrations, when titrated according to oxygen saturation targets during the resuscitation of preterm infants at birth, lead to improved short- and long-term mortality and morbidity. We conducted electronic searches of the Cochrane Central Register of Controlled Trials (13 October 2017), Ovid MEDLINE (1946 to 13 October 2017), Embase (1974 to 13 October 2017) and CINAHL (1982 to 13 October 2017); we also searched previous reviews (including cross-references), contacted expert informants, and handsearched journals. We included randomised controlled trials (including cluster- and quasi-randomised trials) which enrolled preterm infants requiring resuscitation following birth and allocated them to receive either lower (FiO2 < 0.4) or higher (FiO2 ≥ 0.4) initial oxygen concentrations titrated to target oxygen saturation. Two review authors independently assessed the eligibility of studies for inclusion, extracted data and assessed methodological quality. Primary outcomes included mortality near term or at discharge (latest reported) and neurodevelopmental disability. We conducted meta-analysis using a fixed-effect model. We assessed the quality of the evidence using GRADE. The search identified 10 eligible trials. Meta-analysis of the 10 included studies (914 infants) showed no difference in mortality to discharge between lower (FiO2 < 0.4) and higher (FiO2 ≥ 0.4) initial oxygen concentrations targeted to oxygen saturation (risk ratio (RR) 1.05, 95% confidence interval (CI) 0.68 to 1.63). We identified no heterogeneity in this analysis. We graded the quality of the evidence as low due to risk of bias and imprecision. There were no significant subgroup effects according to inspired oxygen concentration strata (FiO2 0.21 versus ≥ 0.4 to < 0.6; FiO2 0.21 versus ≥ 0.6 to 1.0; and FiO2 ≥ 0.3 to < 0.4 versus ≥ 0.6 to 1.0). Subgroup analysis identified a single trial that reported increased mortality from use of lower (FiO2 0.21) versus higher (FiO2 1.0) initial oxygen concentration targeted to a lowest SpO2 of less than 85%, whereas meta-analysis of nine trials targeting a lowest SpO2 of 85% to 90% found no difference in mortality.Meta-analysis of two trials (208 infants) showed no difference in neurodevelopmental disability at 24 months between infants receiving lower (FiO2 < 0.4) versus higher (FiO2 > 0.4) initial oxygen concentrations targeted to oxygen saturation. Other outcomes were incompletely reported by studies. Overall, we found no difference in use of intermittent positive pressure ventilation or intubation in the delivery room; retinopathy (damage to the retina of the eyes, measured as any retinopathy and severe retinopathy); intraventricular haemorrhage (any and severe); periventricular leukomalacia (a type of white-matter brain injury); necrotising enterocolitis (a condition where a portion of the bowel dies); chronic lung disease at 36 weeks' gestation; mortality to follow up; postnatal growth failure; and patent ductus arteriosus. We graded the quality of the evidence for these outcomes as low or very low. There is uncertainty as to whether initiating post birth resuscitation in preterm infants using lower (FiO2 < 0.4) or higher (FiO2 ≥ 0.4) oxygen concentrations, targeted to oxygen saturations in the first 10 minutes, has an important effect on mortality or major morbidity, intubation during post birth resuscitation, other resuscitation outcomes, and long-term outcomes including neurodevelopmental disability. We assessed the quality of the evidence for all outcomes as low to very low. Further large, well designed trials are needed to assess the effect of using different initial oxygen concentrations and the effect of targeting different oxygen saturations.

Twitter Demographics

The data shown below were collected from the profiles of 64 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 109 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 109 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 17 16%
Student > Bachelor 16 15%
Student > Ph. D. Student 13 12%
Researcher 10 9%
Student > Postgraduate 8 7%
Other 22 20%
Unknown 23 21%
Readers by discipline Count As %
Medicine and Dentistry 38 35%
Nursing and Health Professions 16 15%
Social Sciences 3 3%
Unspecified 3 3%
Engineering 2 2%
Other 15 14%
Unknown 32 29%

Attention Score in Context

This research output has an Altmetric Attention Score of 55. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 January 2020.
All research outputs
#426,667
of 16,206,035 outputs
Outputs from Cochrane database of systematic reviews
#1,016
of 11,431 outputs
Outputs of similar age
#14,059
of 281,086 outputs
Outputs of similar age from Cochrane database of systematic reviews
#33
of 182 outputs
Altmetric has tracked 16,206,035 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,431 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 23.9. This one has done particularly well, scoring higher than 91% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 281,086 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 94% of its contemporaries.
We're also able to compare this research output to 182 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.