↓ Skip to main content

Caspase selective reagents for diagnosing apoptotic mechanisms

Overview of attention for article published in Cell Death & Differentiation, May 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (69th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

twitter
11 X users

Citations

dimensions_citation
42 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Caspase selective reagents for diagnosing apoptotic mechanisms
Published in
Cell Death & Differentiation, May 2018
DOI 10.1038/s41418-018-0110-y
Pubmed ID
Authors

Marcin Poreba, Katarzyna Groborz, Mario Navarro, Scott J. Snipas, Marcin Drag, Guy S. Salvesen

Abstract

Apical caspases initiate and effector caspases execute apoptosis. Reagents that can distinguish between caspases, particularly apical caspases-8, 9, and 10 are scarce and generally nonspecific. Based upon a previously described large-scale screen of peptide-based caspase substrates termed HyCoSuL, we sought to develop reagents to distinguish between apical caspases in order to reveal their function in apoptotic cell death paradigms. To this end, we selected tetrapeptide-based sequences that deliver optimal substrate selectivity and converted them to inhibitors equipped with a detectable tag (activity-based probes-ABPs). We demonstrate a strong relationship between substrate kinetics and ABP kinetics. To evaluate the utility of selective substrates and ABPs, we examined distinct apoptosis pathways in Jurkat T lymphocyte and MDA-MB-231 breast cancer lines triggered to undergo cell death via extrinsic or intrinsic apoptosis. We report the first highly selective substrate appropriate for quantitation of caspase-8 activity during apoptosis. Converting substrates to ABPs promoted loss-of-activity and selectivity, thus we could not define a single ABP capable of detecting individual apical caspases in complex mixtures. To overcome this, we developed a panel strategy utilizing several caspase-selective ABPs to interrogate apoptosis, revealing the first chemistry-based approach to uncover the participation of caspase-8, but not caspase-9 or -10 in TRAIL-induced extrinsic apoptosis. We propose that using select panels of ABPs can provide information regarding caspase-8 apoptotic signaling more faithfully than can single, generally nonspecific reagents.

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 51 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 35%
Researcher 5 10%
Student > Bachelor 3 6%
Professor > Associate Professor 2 4%
Student > Master 2 4%
Other 2 4%
Unknown 19 37%
Readers by discipline Count As %
Chemistry 10 20%
Agricultural and Biological Sciences 6 12%
Biochemistry, Genetics and Molecular Biology 4 8%
Medicine and Dentistry 4 8%
Chemical Engineering 2 4%
Other 5 10%
Unknown 20 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 March 2019.
All research outputs
#5,675,677
of 23,047,237 outputs
Outputs from Cell Death & Differentiation
#1,206
of 3,010 outputs
Outputs of similar age
#97,292
of 326,024 outputs
Outputs of similar age from Cell Death & Differentiation
#19
of 48 outputs
Altmetric has tracked 23,047,237 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,010 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.2. This one has gotten more attention than average, scoring higher than 59% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,024 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.
We're also able to compare this research output to 48 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.