↓ Skip to main content

G Protein-Coupled Receptors in Drug Discovery

Overview of attention for book
Cover of 'G Protein-Coupled Receptors in Drug Discovery'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Purification of Stabilized GPCRs for Structural and Biophysical Analyses
  3. Altmetric Badge
    Chapter 2 Purification and Crystallization of a Thermostabilized Agonist-Bound Conformation of the Human Adenosine A 2A Receptor
  4. Altmetric Badge
    Chapter 3 2D Projection Analysis of GPCR Complexes by Negative Stain Electron Microscopy
  5. Altmetric Badge
    Chapter 4 Nuts and Bolts of CF 3 and CH 3 NMR Toward the Understanding of Conformational Exchange of GPCRs
  6. Altmetric Badge
    Chapter 5 Single-Molecule Fluorescence Microscopy for the Analysis of Fast Receptor Dynamics
  7. Altmetric Badge
    Chapter 6 Quantitative Multi-color Detection Strategies for Bioorthogonally Labeled GPCRs
  8. Altmetric Badge
    Chapter 7 Approaches to Characterize and Quantify Oligomerization of GPCRs
  9. Altmetric Badge
    Chapter 8 Monitoring G Protein Activation in Cells with BRET
  10. Altmetric Badge
    Chapter 9 Use of Fluorescence Indicators in Receptor Ligands
  11. Altmetric Badge
    Chapter 10 Detection and Quantification of Intracellular Signaling Using FRET-Based Biosensors and High Content Imaging
  12. Altmetric Badge
    Chapter 11 The Measurement of Receptor Signaling Bias
  13. Altmetric Badge
    Chapter 12 Approaches to Assess Functional Selectivity in GPCRs: Evaluating G Protein Signaling in an Endogenous Environment
  14. Altmetric Badge
    Chapter 13 Bioluminescence Resonance Energy Transfer Approaches to Discover Bias in GPCR Signaling
  15. Altmetric Badge
    Chapter 14 Virus-Mediated Expression of DREADDs for In Vivo Metabolic Studies
  16. Altmetric Badge
    Chapter 15 High-Throughput Screening for Allosteric Modulators of GPCRs
  17. Altmetric Badge
    Chapter 16 Radioligand Binding Assay for an Exon 11-Associated Mu Opioid Receptor Target
  18. Altmetric Badge
    Chapter 17 Docking and Virtual Screening Strategies for GPCR Drug Discovery
  19. Altmetric Badge
    Chapter 18 The Dynamic Process of Drug–GPCR Binding at Either Orthosteric or Allosteric Sites Evaluated by Metadynamics
  20. Altmetric Badge
    Chapter 19 Experiment-Guided Molecular Modeling of Protein–Protein Complexes Involving GPCRs
  21. Altmetric Badge
    Chapter 20 Interaction Fingerprints and Their Applications to Identify Hot Spots
Attention for Chapter 17: Docking and Virtual Screening Strategies for GPCR Drug Discovery
Altmetric Badge

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Docking and Virtual Screening Strategies for GPCR Drug Discovery
Chapter number 17
Book title
G Protein-Coupled Receptors in Drug Discovery
Published in
Methods in molecular biology, January 2015
DOI 10.1007/978-1-4939-2914-6_17
Pubmed ID
Book ISBNs
978-1-4939-2913-9, 978-1-4939-2914-6
Authors

Thijs Beuming, Bart Lenselink, Daniele Pala, Fiona McRobb, Matt Repasky, Woody Sherman, Beuming, Thijs, Lenselink, Bart, Pala, Daniele, McRobb, Fiona, Repasky, Matt, Sherman, Woody

Abstract

Progress in structure determination of G protein-coupled receptors (GPCRs) has made it possible to apply structure-based drug design (SBDD) methods to this pharmaceutically important target class. The quality of GPCR structures available for SBDD projects fall on a spectrum ranging from high resolution crystal structures (<2 Å), where all water molecules in the binding pocket are resolved, to lower resolution (>3 Å) where some protein residues are not resolved, and finally to homology models that are built using distantly related templates. Each GPCR project involves a distinct set of opportunities and challenges, and requires different approaches to model the interaction between the receptor and the ligands. In this review we will discuss docking and virtual screening to GPCRs, and highlight several refinement and post-processing steps that can be used to improve the accuracy of these calculations. Several examples are discussed that illustrate specific steps that can be taken to improve upon the docking and virtual screening accuracy. While GPCRs are a unique target class, many of the methods and strategies outlined in this review are general and therefore applicable to other protein families.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 29 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 37%
Researcher 5 17%
Student > Master 4 13%
Student > Bachelor 3 10%
Other 2 7%
Other 1 3%
Unknown 4 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 23%
Pharmacology, Toxicology and Pharmaceutical Science 5 17%
Computer Science 3 10%
Agricultural and Biological Sciences 3 10%
Chemistry 3 10%
Other 5 17%
Unknown 4 13%