↓ Skip to main content

Microglial density determines the appearance of pathological neovascular tufts in oxygen-induced retinopathy

Overview of attention for article published in Cell and Tissue Research, May 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Microglial density determines the appearance of pathological neovascular tufts in oxygen-induced retinopathy
Published in
Cell and Tissue Research, May 2018
DOI 10.1007/s00441-018-2847-5
Pubmed ID
Authors

Wenqin Xu, Zhicha Hu, Yang Lv, Guorui Dou, Zifeng Zhang, Haiyan Wang, Yusheng Wang

Abstract

The oxygen-induced retinopathy (OIR) animal model established in C57 mice and SD rats has been widely used in retinal neovascular disease studies, while Balb/c mice have not been used because Balb/c OIR mice lack neovascular tufts. One study found a substantial difference in the density of retinal microglia between C57 and Balb/c mice; however, no direct evidence could clarify whether the density of retinal microglia in Balb/c mice led to this difference. In our study, intraperitoneal injection of minocycline was used to inhibit the activation of microglia and intravitreal injection of clodronate liposomes was used to decrease the density of microglia in Balb/c OIR model mice. We found that with the decline in microglia induced by the two drugs, the avascular area in treated Balb/c OIR mice was higher than that in untreated Balb/c OIR mice; moreover, a small area of neovascular tufts appeared at P17. After checking the expression of Iba1, a microglial marker and GFAP, an astrocyte and Müller cell marker, we found that minocycline and clodronate could inhibit the activation of microglia or decrease the density of microglia, while they had no significant effect on astrocytes and Müller cells. Therefore, these data suggest that the density of microglia in the retina may determine the result of vasculopathy in OIR mice to some extent. In future studies, predicting the development of retinal neovascular diseases by detecting the density of microglia in living animals or human beings with newly developed instruments and methods may be useful.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 17%
Student > Bachelor 2 11%
Student > Doctoral Student 2 11%
Professor > Associate Professor 2 11%
Researcher 2 11%
Other 4 22%
Unknown 3 17%
Readers by discipline Count As %
Medicine and Dentistry 6 33%
Biochemistry, Genetics and Molecular Biology 4 22%
Agricultural and Biological Sciences 1 6%
Arts and Humanities 1 6%
Unknown 6 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 May 2018.
All research outputs
#21,178,329
of 23,839,820 outputs
Outputs from Cell and Tissue Research
#2,002
of 2,279 outputs
Outputs of similar age
#290,298
of 329,810 outputs
Outputs of similar age from Cell and Tissue Research
#21
of 25 outputs
Altmetric has tracked 23,839,820 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,279 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,810 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 25 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.