↓ Skip to main content

A change of heart: oxidative stress in governing muscle function?

Overview of attention for article published in Biophysical Reviews, June 2015
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A change of heart: oxidative stress in governing muscle function?
Published in
Biophysical Reviews, June 2015
DOI 10.1007/s12551-015-0175-5
Pubmed ID
Authors

Martin Breitkreuz, Nazha Hamdani

Abstract

Redox/cysteine modification of proteins that regulate calcium cycling can affect contraction in striated muscles. Understanding the nature of these modifications would present the possibility of enhancing cardiac function through reversible cysteine modification of proteins, with potential therapeutic value in heart failure with diastolic dysfunction. Both heart failure and muscular dystrophy are characterized by abnormal redox balance and nitrosative stress. Recent evidence supports the synergistic role of oxidative stress and inflammation in the progression of heart failure with preserved ejection fraction, in concert with endothelial dysfunction and impaired nitric oxide-cyclic guanosine monophosphate-protein kinase G signalling via modification of the giant protein titin. Although antioxidant therapeutics in heart failure with diastolic dysfunction have no marked beneficial effects on the outcome of patients, it, however, remains critical to the understanding of the complex interactions of oxidative/nitrosative stress with pro-inflammatory mechanisms, metabolic dysfunction, and the redox modification of proteins characteristic of heart failure. These may highlight novel approaches to therapeutic strategies for heart failure with diastolic dysfunction. In this review, we provide an overview of oxidative stress and its effects on pathophysiological pathways. We describe the molecular mechanisms driving oxidative modification of proteins and subsequent effects on contractile function, and, finally, we discuss potential therapeutic opportunities for heart failure with diastolic dysfunction.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Unknown 44 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 22%
Student > Ph. D. Student 10 22%
Student > Master 8 18%
Student > Postgraduate 2 4%
Unspecified 2 4%
Other 4 9%
Unknown 9 20%
Readers by discipline Count As %
Medicine and Dentistry 13 29%
Biochemistry, Genetics and Molecular Biology 7 16%
Agricultural and Biological Sciences 4 9%
Sports and Recreations 3 7%
Unspecified 2 4%
Other 7 16%
Unknown 9 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 June 2015.
All research outputs
#17,764,580
of 22,815,414 outputs
Outputs from Biophysical Reviews
#382
of 794 outputs
Outputs of similar age
#176,744
of 263,249 outputs
Outputs of similar age from Biophysical Reviews
#1
of 1 outputs
Altmetric has tracked 22,815,414 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 794 research outputs from this source. They receive a mean Attention Score of 2.6. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,249 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them