↓ Skip to main content

Quantifying engineered nanomaterial toxicity: comparison of common cytotoxicity and gene expression measurements

Overview of attention for article published in Journal of Nanobiotechnology, November 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (66th percentile)
  • High Attention Score compared to outputs of the same age and source (84th percentile)

Mentioned by

policy
1 policy source
twitter
1 X user

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Quantifying engineered nanomaterial toxicity: comparison of common cytotoxicity and gene expression measurements
Published in
Journal of Nanobiotechnology, November 2017
DOI 10.1186/s12951-017-0312-3
Pubmed ID
Authors

Donald H. Atha, Amber Nagy, Andrea Steinbrück, Allison M. Dennis, Jennifer A. Hollingsworth, Varsha Dua, Rashi Iyer, Bryant C. Nelson

Abstract

When evaluating the toxicity of engineered nanomaterials (ENMS) it is important to use multiple bioassays based on different mechanisms of action. In this regard we evaluated the use of gene expression and common cytotoxicity measurements using as test materials, two selected nanoparticles with known differences in toxicity, 5 nm mercaptoundecanoic acid (MUA)-capped InP and CdSe quantum dots (QDs). We tested the effects of these QDs at concentrations ranging from 0.5 to 160 µg/mL on cultured normal human bronchial epithelial (NHBE) cells using four common cytotoxicity assays: the dichlorofluorescein assay for reactive oxygen species (ROS), the lactate dehydrogenase assay for membrane viability (LDH), the mitochondrial dehydrogenase assay for mitochondrial function, and the Comet assay for DNA strand breaks. The cytotoxicity assays showed similar trends when exposed to nanoparticles for 24 h at 80 µg/mL with a threefold increase in ROS with exposure to CdSe QDs compared to an insignificant change in ROS levels after exposure to InP QDs, a twofold increase in the LDH necrosis assay in NHBE cells with exposure to CdSe QDs compared to a 50% decrease for InP QDs, a 60% decrease in the mitochondrial function assay upon exposure to CdSe QDs compared to a minimal increase in the case of InP and significant DNA strand breaks after exposure to CdSe QDs compared to no significant DNA strand breaks with InP. High-throughput quantitative real-time polymerase chain reaction (qRT-PCR) data for cells exposed for 6 h at a concentration of 80 µg/mL were consistent with the cytotoxicity assays showing major differences in DNA damage, DNA repair and mitochondrial function gene regulatory responses to the CdSe and InP QDs. The BRCA2, CYP1A1, CYP1B1, CDK1, SFN and VEGFA genes were observed to be upregulated specifically from increased CdSe exposure and suggests their possible utility as biomarkers for toxicity. This study can serve as a model for comparing traditional cytotoxicity assays and gene expression measurements and to determine candidate biomarkers for assessing the biocompatibility of ENMs.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 27%
Student > Bachelor 4 18%
Student > Doctoral Student 1 5%
Professor 1 5%
Student > Postgraduate 1 5%
Other 0 0%
Unknown 9 41%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 14%
Biochemistry, Genetics and Molecular Biology 2 9%
Engineering 2 9%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Immunology and Microbiology 1 5%
Other 4 18%
Unknown 9 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 January 2023.
All research outputs
#6,672,541
of 23,569,120 outputs
Outputs from Journal of Nanobiotechnology
#231
of 1,531 outputs
Outputs of similar age
#109,254
of 332,169 outputs
Outputs of similar age from Journal of Nanobiotechnology
#3
of 13 outputs
Altmetric has tracked 23,569,120 research outputs across all sources so far. This one has received more attention than most of these and is in the 70th percentile.
So far Altmetric has tracked 1,531 research outputs from this source. They receive a mean Attention Score of 3.6. This one has done well, scoring higher than 83% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,169 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 84% of its contemporaries.