↓ Skip to main content

Anti-bacterial antibody and T cell responses in bronchiectasis are differentially associated with lung colonization and disease

Overview of attention for article published in Respiratory Research, May 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Anti-bacterial antibody and T cell responses in bronchiectasis are differentially associated with lung colonization and disease
Published in
Respiratory Research, May 2018
DOI 10.1186/s12931-018-0811-2
Pubmed ID
Authors

Fathia G. Jaat, Sajidah F. Hasan, Audrey Perry, Sharon Cookson, Santosh Murali, John D. Perry, Clare V. Lanyon, Anthony De Soyza, Stephen M. Todryk

Abstract

As a way to determine markers of infection or disease informing disease management, and to reveal disease-associated immune mechanisms, this study sought to measure antibody and T cell responses against key lung pathogens and to relate these to patients' microbial colonization status, exacerbation history and lung function, in Bronchiectasis (BR) and Chronic Obstructive Pulmonary Disease (COPD). One hundred nineteen patients with stable BR, 58 with COPD and 28 healthy volunteers were recruited and spirometry was performed. Bacterial lysates were used to measure specific antibody responses by ELISA and T cells by ELIspot. Cytokine secretion by lysate-stimulated T cells was measured by multiplex cytokine assay whilst activation phenotype was measured by flow cytometry. Typical colonization profiles were observed in BR and COPD, dominated by P.aeruginosa, H.influenzae, S.pneumoniae and M.catarrhalis. Colonization frequency was greater in BR, showing association with increased antibody responses against P.aeruginosa compared to COPD and HV, and with sensitivity of 73% and specificity of 95%. Interferon-gamma T cell responses against P.aeruginosa and S.pneumoniae were reduced in BR and COPD, whilst reactive T cells in BR had similar markers of homing and senescence compared to healthy volunteers. Exacerbation frequency in BR was associated with increased antibodies against P. aeruginosa, M.catarrhalis and S.maltophilia. T cell responses against H.influenzae showed positive correlation with FEV1% (r = 0.201, p = 0.033) and negative correlation with Bronchiectasis Severity Index (r = - 0.287, p = 0.0035). Our findings suggest a difference in antibody and T cell immunity in BR, with antibody being a marker of exposure and disease in BR for P.aeruginosa, M.catarrhalis and H.influenzae, and T cells a marker of reduced disease for H.influenzae.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 46 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 17%
Student > Ph. D. Student 6 13%
Student > Bachelor 6 13%
Professor > Associate Professor 3 7%
Lecturer 2 4%
Other 8 17%
Unknown 13 28%
Readers by discipline Count As %
Medicine and Dentistry 7 15%
Immunology and Microbiology 6 13%
Biochemistry, Genetics and Molecular Biology 4 9%
Agricultural and Biological Sciences 3 7%
Nursing and Health Professions 3 7%
Other 5 11%
Unknown 18 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 October 2018.
All research outputs
#16,053,755
of 25,382,440 outputs
Outputs from Respiratory Research
#1,891
of 3,062 outputs
Outputs of similar age
#199,000
of 344,275 outputs
Outputs of similar age from Respiratory Research
#45
of 70 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 344,275 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 70 others from the same source and published within six weeks on either side of this one. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.