↓ Skip to main content

Interventions for childhood apraxia of speech

Overview of attention for article published in Cochrane database of systematic reviews, May 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
7 tweeters
facebook
1 Facebook page
wikipedia
1 Wikipedia page

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
230 Mendeley
citeulike
4 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Interventions for childhood apraxia of speech
Published in
Cochrane database of systematic reviews, May 2018
DOI 10.1002/14651858.cd006278.pub3
Pubmed ID
Authors

Angela T Morgan, Elizabeth Murray, Frederique J Liégeois

Abstract

Childhood apraxia of speech (CAS) affects a child's ability to produce sounds and syllables precisely and consistently, and to produce words and sentences with accuracy and correct speech rhythm. It is a rare condition, affecting only 0.1% of the general population. Consensus has been reached that three core features have diagnostic validity: (1) inconsistent error production on both consonants and vowels across repeated productions of syllables or words; (2) lengthened and impaired coarticulatory transitions between sounds and syllables; and (3) inappropriate prosody (ASHA 2007). A deficit in motor programming or planning is thought to underlie the condition. This means that children know what they would like to say but there is a breakdown in the ability to programme or plan the fine and rapid movements required to accurately produce speech. Children with CAS may also have impairments in one or more of the following areas: non-speech oral motor function, dysarthria, language, phonological production impairment, phonemic awareness or metalinguistic skills and literacy, or combinations of these. High-quality evidence from randomised controlled trials (RCTs) is lacking on interventions for CAS. To assess the efficacy of interventions targeting speech and language in children and adolescents with CAS as delivered by speech and language pathologists/therapists. We searched CENTRAL, MEDLINE, Embase, eight other databases and seven trial registers up to April 2017. We searched the reference lists of included reports and requested information on unpublished trials from authors of published studies and other experts as well as information groups in the areas of speech and language therapy/pathology and linguistics. RCTs and quasi-RCTs of children aged 3 to 16 years with CAS diagnosed by a speech and language pathologist/therapist, grouped by treatment types. Two review authors (FL, AM) independently assessed titles and abstracts identified from the searches and obtained full-text reports of all potentially relevant articles and assessed these for eligibility. The same two authors extracted data and conducted the 'Risk of bias' and GRADE assessments. One review author (EM) tabulated findings from excluded observational studies (Table 1). This review includes only one RCT, funded by the Australian Research Council; the University of Sydney International Development Fund; Douglas and Lola Douglas Scholarship on Child and Adolescent Health; Nadia Verrall Memorial Scholarship; and a James Kentley Memorial Fellowship. This study recruited 26 children aged 4 to 12 years, with mild to moderate CAS of unknown cause, and compared two interventions: the Nuffield Dyspraxia Programme-3 (NDP-3); and the Rapid Syllable Transitions Treatment (ReST). Children were allocated randomly to one of the two treatments. Treatments were delivered intensively in one-hour sessions, four days a week for three weeks, in a university clinic in Australia. Speech pathology students delivered the treatments in the English language. Outcomes were assessed before therapy, immediately after therapy, at one month and four months post-therapy. Our review looked at one-month post-therapy outcomes only.We judged all core outcome domains to be low risk of bias. We downgraded the quality of the evidence by one level to moderate due to imprecision, given that only one RCT was identified. Both the NDP-3 and ReST therapies demonstrated improvement at one month post-treatment. A number of cases in each cohort had recommenced usual treatment by their speech and language pathologist between one month and four months post-treatment (NDP-3: 9/13 participants; ReST: 9/13 participants). Hence, maintenance of treatment effects to four months post-treatment could not be analysed without significant potential bias, and thus this time point was not included for further analysis in this review.There is limited evidence that, when delivered intensively, both the NDP-3 and ReST may effect improvement in word accuracy in 4- to 12-year-old children with CAS, measured by the accuracy of production on treated and non-treated words, speech production consistency and the accuracy of connected speech. The study did not measure functional communication. There is limited evidence that, when delivered intensively, both the NDP-3 and ReST may effect improvement in word accuracy in 4- to 12-year-old children with CAS, measured by the accuracy of production on treated and non-treated words, speech production consistency and the accuracy of connected speech. The study did not measure functional communication. No formal analyses were conducted to compare NDP-3 and ReST by the original study authors, hence one treatment cannot be reliably advocated over the other. We are also unable to say whether either treatment is better than no treatment or treatment as usual. No evidence currently exists to support the effectiveness of other treatments for children aged 4 to 12 years with idiopathic CAS without other comorbid neurodevelopmental disorders. Further RCTs replicating this study would strengthen the evidence base. Similarly, further RCTs are needed of other interventions, in other age ranges and populations with CAS and with co-occurring disorders.

Twitter Demographics

The data shown below were collected from the profiles of 7 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 230 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 230 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 50 22%
Student > Bachelor 36 16%
Researcher 25 11%
Student > Ph. D. Student 21 9%
Other 13 6%
Other 40 17%
Unknown 45 20%
Readers by discipline Count As %
Nursing and Health Professions 43 19%
Medicine and Dentistry 37 16%
Social Sciences 25 11%
Psychology 17 7%
Linguistics 9 4%
Other 40 17%
Unknown 59 26%

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 June 2020.
All research outputs
#3,026,779
of 15,866,536 outputs
Outputs from Cochrane database of systematic reviews
#5,766
of 11,307 outputs
Outputs of similar age
#75,798
of 282,205 outputs
Outputs of similar age from Cochrane database of systematic reviews
#114
of 175 outputs
Altmetric has tracked 15,866,536 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,307 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 23.6. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 282,205 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 175 others from the same source and published within six weeks on either side of this one. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.