↓ Skip to main content

Understanding and predicting suicidality using a combined genomic and clinical risk assessment approach

Overview of attention for article published in Molecular Psychiatry, August 2015
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (99th percentile)
  • High Attention Score compared to outputs of the same age and source (96th percentile)

Mentioned by

news
11 news outlets
blogs
9 blogs
twitter
38 X users
patent
5 patents
facebook
11 Facebook pages
wikipedia
1 Wikipedia page
googleplus
3 Google+ users
reddit
2 Redditors

Citations

dimensions_citation
128 Dimensions

Readers on

mendeley
373 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Understanding and predicting suicidality using a combined genomic and clinical risk assessment approach
Published in
Molecular Psychiatry, August 2015
DOI 10.1038/mp.2015.112
Pubmed ID
Authors

A B Niculescu, D F Levey, P L Phalen, H Le-Niculescu, H D Dainton, N Jain, E Belanger, A James, S George, H Weber, D L Graham, R Schweitzer, T B Ladd, R Learman, E M Niculescu, N P Vanipenta, F N Khan, J Mullen, G Shankar, S Cook, C Humbert, A Ballew, M Yard, T Gelbart, A Shekhar, N J Schork, S M Kurian, G E Sandusky, D R Salomon

Abstract

Worldwide, one person dies every 40 seconds by suicide, a potentially preventable tragedy. A limiting step in our ability to intervene is the lack of objective, reliable predictors. We have previously provided proof of principle for the use of blood gene expression biomarkers to predict future hospitalizations due to suicidality, in male bipolar disorder participants. We now generalize the discovery, prioritization, validation, and testing of such markers across major psychiatric disorders (bipolar disorder, major depressive disorder, schizoaffective disorder, and schizophrenia) in male participants, to understand commonalities and differences. We used a powerful within-participant discovery approach to identify genes that change in expression between no suicidal ideation and high suicidal ideation states (n=37 participants out of a cohort of 217 psychiatric participants followed longitudinally). We then used a convergent functional genomics (CFG) approach with existing prior evidence in the field to prioritize the candidate biomarkers identified in the discovery step. Next, we validated the top biomarkers from the prioritization step for relevance to suicidal behavior, in a demographically matched cohort of suicide completers from the coroner's office (n=26). The biomarkers for suicidal ideation only are enriched for genes involved in neuronal connectivity and schizophrenia, the biomarkers also validated for suicidal behavior are enriched for genes involved in neuronal activity and mood. The 76 biomarkers that survived Bonferroni correction after validation for suicidal behavior map to biological pathways involved in immune and inflammatory response, mTOR signaling and growth factor regulation. mTOR signaling is necessary for the effects of the rapid-acting antidepressant agent ketamine, providing a novel biological rationale for its possible use in treating acute suicidality. Similarly, MAOB, a target of antidepressant inhibitors, was one of the increased biomarkers for suicidality. We also identified other potential therapeutic targets or biomarkers for drugs known to mitigate suicidality, such as omega-3 fatty acids, lithium and clozapine. Overall, 14% of the top candidate biomarkers also had evidence for involvement in psychological stress response, and 19% for involvement in programmed cell death/cellular suicide (apoptosis). It may be that in the face of adversity (stress), death mechanisms are turned on at a cellular (apoptosis) and organismal level. Finally, we tested the top increased and decreased biomarkers from the discovery for suicidal ideation (CADM1, CLIP4, DTNA, KIF2C), prioritization with CFG for prior evidence (SAT1, SKA2, SLC4A4), and validation for behavior in suicide completers (IL6, MBP, JUN, KLHDC3) steps in a completely independent test cohort of psychiatric participants for prediction of suicidal ideation (n=108), and in a future follow-up cohort of psychiatric participants (n=157) for prediction of psychiatric hospitalizations due to suicidality. The best individual biomarker across psychiatric diagnoses for predicting suicidal ideation was SLC4A4, with a receiver operating characteristic (ROC) area under the curve (AUC) of 72%. For bipolar disorder in particular, SLC4A4 predicted suicidal ideation with an AUC of 93%, and future hospitalizations with an AUC of 70%. SLC4A4 is involved in brain extracellular space pH regulation. Brain pH has been implicated in the pathophysiology of acute panic attacks. We also describe two new clinical information apps, one for affective state (simplified affective state scale, SASS) and one for suicide risk factors (Convergent Functional Information for Suicide, CFI-S), and how well they predict suicidal ideation across psychiatric diagnoses (AUC of 85% for SASS, AUC of 89% for CFI-S). We hypothesized a priori, based on our previous work, that the integration of the top biomarkers and the clinical information into a universal predictive measure (UP-Suicide) would show broad-spectrum predictive ability across psychiatric diagnoses. Indeed, the UP-Suicide was able to predict suicidal ideation across psychiatric diagnoses with an AUC of 92%. For bipolar disorder, it predicted suicidal ideation with an AUC of 98%, and future hospitalizations with an AUC of 94%. Of note, both types of tests we developed (blood biomarkers and clinical information apps) do not require asking the individual assessed if they have thoughts of suicide, as individuals who are truly suicidal often do not share that information with clinicians. We propose that the widespread use of such risk prediction tests as part of routine or targeted healthcare assessments will lead to early disease interception followed by preventive lifestyle modifications and proactive treatment.Molecular Psychiatry advance online publication, 18 August 2015; doi:10.1038/mp.2015.112.

X Demographics

X Demographics

The data shown below were collected from the profiles of 38 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 373 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 6 2%
Australia 2 <1%
Ireland 1 <1%
Argentina 1 <1%
Brazil 1 <1%
Spain 1 <1%
Luxembourg 1 <1%
Unknown 360 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 50 13%
Student > Ph. D. Student 47 13%
Student > Bachelor 40 11%
Student > Master 36 10%
Student > Doctoral Student 27 7%
Other 85 23%
Unknown 88 24%
Readers by discipline Count As %
Medicine and Dentistry 76 20%
Psychology 58 16%
Neuroscience 36 10%
Agricultural and Biological Sciences 19 5%
Biochemistry, Genetics and Molecular Biology 18 5%
Other 56 15%
Unknown 110 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 183. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 May 2023.
All research outputs
#222,544
of 26,017,215 outputs
Outputs from Molecular Psychiatry
#188
of 4,696 outputs
Outputs of similar age
#2,483
of 281,121 outputs
Outputs of similar age from Molecular Psychiatry
#2
of 59 outputs
Altmetric has tracked 26,017,215 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 99th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,696 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 39.3. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 281,121 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 99% of its contemporaries.
We're also able to compare this research output to 59 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 96% of its contemporaries.