↓ Skip to main content

Characterization of Nanoparticle Batch-To-Batch Variability

Overview of attention for article published in Nanomaterials, May 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (57th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
66 Dimensions

Readers on

mendeley
113 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Characterization of Nanoparticle Batch-To-Batch Variability
Published in
Nanomaterials, May 2018
DOI 10.3390/nano8050311
Pubmed ID
Authors

Sonja Mülhopt, Silvia Diabaté, Marco Dilger, Christel Adelhelm, Christopher Anderlohr, Thomas Bergfeldt, Johan Gómez de la Torre, Yunhong Jiang, Eugenia Valsami-Jones, Dominique Langevin, Iseult Lynch, Eugene Mahon, Inge Nelissen, Jordi Piella, Victor Puntes, Sikha Ray, Reinhard Schneider, Terry Wilkins, Carsten Weiss, Hanns-Rudolf Paur

Abstract

A central challenge for the safe design of nanomaterials (NMs) is the inherent variability of NM properties, both as produced and as they interact with and evolve in, their surroundings. This has led to uncertainty in the literature regarding whether the biological and toxicological effects reported for NMs are related to specific NM properties themselves, or rather to the presence of impurities or physical effects such as agglomeration of particles. Thus, there is a strong need for systematic evaluation of the synthesis and processing parameters that lead to potential variability of different NM batches and the reproducible production of commonly utilized NMs. The work described here represents over three years of effort across 14 European laboratories to assess the reproducibility of nanoparticle properties produced by the same and modified synthesis routes for four of the OECD priority NMs (silica dioxide, zinc oxide, cerium dioxide and titanium dioxide) as well as amine-modified polystyrene NMs, which are frequently employed as positive controls for nanotoxicity studies. For 46 different batches of the selected NMs, all physicochemical descriptors as prioritized by the OECD have been fully characterized. The study represents the most complete assessment of NMs batch-to-batch variability performed to date and provides numerous important insights into the potential sources of variability of NMs and how these might be reduced.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 113 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 113 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 18%
Researcher 19 17%
Student > Doctoral Student 9 8%
Student > Bachelor 9 8%
Other 9 8%
Other 20 18%
Unknown 27 24%
Readers by discipline Count As %
Chemistry 15 13%
Engineering 14 12%
Biochemistry, Genetics and Molecular Biology 8 7%
Agricultural and Biological Sciences 5 4%
Chemical Engineering 5 4%
Other 26 23%
Unknown 40 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 January 2023.
All research outputs
#16,317,436
of 25,766,791 outputs
Outputs from Nanomaterials
#1,707
of 5,252 outputs
Outputs of similar age
#198,759
of 342,403 outputs
Outputs of similar age from Nanomaterials
#32
of 76 outputs
Altmetric has tracked 25,766,791 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,252 research outputs from this source. They receive a mean Attention Score of 3.0. This one has gotten more attention than average, scoring higher than 63% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,403 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 76 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.