↓ Skip to main content

Inhibition of NOX2 reduces locomotor impairment, inflammation, and oxidative stress after spinal cord injury

Overview of attention for article published in Journal of Neuroinflammation, September 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
77 Dimensions

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Inhibition of NOX2 reduces locomotor impairment, inflammation, and oxidative stress after spinal cord injury
Published in
Journal of Neuroinflammation, September 2015
DOI 10.1186/s12974-015-0391-8
Pubmed ID
Authors

Guzal Khayrullina, Sara Bermudez, Kimberly R. Byrnes

Abstract

Spinal cord injury (SCI) results in the activation of the NADPH oxidase (NOX) enzyme, inducing production of reactive oxygen species (ROS). We hypothesized that the NOX2 isoform plays an integral role in post-SCI inflammation and functional deficits. Moderate spinal cord contusion injury was performed in adult male mice, and flow cytometry, western blot, and immunohistochemistry were used to assess NOX2 activity and expression, inflammation, and M1/M2 microglia/macrophage polarization from 1 to 28 days after injury. The NOX2-specific inhibitor, gp91ds-tat, was injected into the intrathecal space immediately after impact. The Basso Mouse Scale (BMS) was used to assess locomotor function at 24 h post-injury and weekly thereafter. Our findings show that gp91ds-tat treatment significantly improved functional recovery through 28 days post-injury and reduced inflammatory cell concentrations in the injured spinal cord at 24 h and 7 days post-injury. In addition, a number of oxidative stress markers were reduced in expression at 24 h after gp91ds-tat treatment, which was accompanied by a reduction in M1 polarization marker expression. Based on our findings, we now conclude that inhibition of NOX2 significantly improves outcome after SCI, most likely via acute reductions in oxidative stress and inflammation. NOX2 inhibition may therefore have true potential as a therapy after SCI.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 41 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 8 20%
Student > Ph. D. Student 7 17%
Student > Doctoral Student 6 15%
Student > Master 4 10%
Researcher 4 10%
Other 3 7%
Unknown 9 22%
Readers by discipline Count As %
Neuroscience 15 37%
Medicine and Dentistry 7 17%
Nursing and Health Professions 2 5%
Agricultural and Biological Sciences 2 5%
Psychology 2 5%
Other 4 10%
Unknown 9 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 September 2015.
All research outputs
#15,170,530
of 25,374,917 outputs
Outputs from Journal of Neuroinflammation
#1,689
of 2,951 outputs
Outputs of similar age
#138,262
of 283,795 outputs
Outputs of similar age from Journal of Neuroinflammation
#24
of 50 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,951 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.7. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 283,795 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 50 others from the same source and published within six weeks on either side of this one. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.