↓ Skip to main content

Dietary interventions for mineral and bone disorder in people with chronic kidney disease

Overview of attention for article published in Cochrane database of systematic reviews, September 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (91st percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

news
1 news outlet
twitter
20 tweeters

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Dietary interventions for mineral and bone disorder in people with chronic kidney disease
Published in
Cochrane database of systematic reviews, September 2015
DOI 10.1002/14651858.cd010350.pub2
Pubmed ID
Authors

Zhuangzhu Liu, Guobin Su, Xinfeng Guo, Yifan Wu, Xusheng Liu, Chuan Zou, Lei Zhang, Qianchun Yang, Yuan Xu, Weizhong Ma

Abstract

Chronic kidney disease-mineral and bone disorder (CKD-MBD) is a systemic dysfunction of mineral and bone metabolism in people with CKD. Recent research shows that phosphate retention plays a significant role in the development of CKD-MBD. Compared with drug therapies, dietary interventions may be simple, inexpensive and feasible for phosphate retention. However, there is little evidence to support these interventions. Our objective was to assess the benefits and harms of any dietary intervention for preventing and treating CKD-MBD. We searched Cochrane Kidney and Transplant's Specialised Register to 27 August 2015 through contact with the Trials' Search Co-ordinator using search terms relevant to this review. We also searched the Chinese Biomedicine Database (CBM) (1976 to August 2015), China Knowledge Resource Integrated Database (CNKI) (1979 to August 2015), and VIP (1989 to August 2015). Randomised controlled trials (RCTs) and quasi-RCTs looking at dietary interventions for prevention or treatment of CKD-MBD were eligible for inclusion. Two authors independently assessed the eligibility, methodological quality, and extracted data. Continuous outcomes (serum calcium level, serum phosphorus level, calcium × phosphate product, parathyroid hormone (PTH), fibroblast growth factor 23 (FGF-23) and alkaline phosphatase) were expressed as mean difference (MD) with 95% confidence interval (CI). Dichotomous outcomes (mortality) were expressed as risk ratio (RR) with 95% CI. We used a random-effects model to meta-analyse studies. Nine studies were included in this review which analysed 634 participants. Study duration ranged from 4 to 24 weeks. The interventions included calcium-enriched bread, low phosphorus intake, low protein intake, very low protein intake, post haemodialysis supplements and hypolipaemic diet. Only one study reported death; none of the included studies reported cardiovascular events or fractures. There was insufficient reporting of design and methodological aspects among the included studies to enable robust assessment of risk of bias.There was limited and low-quality evidence to indicate that calcium-enriched bread increased serum calcium (1 study, 53 participants: MD -0.16 mmol/L, 95% CI -0.51 to -0.31), decreased serum phosphorus (53 participants: MD -0.41 mmol/L, 95% CI -0.51 to -0.31) and decreased the calcium × phosphate product (53 participants: MD -0.62 mmol²/L², 95% CI -0.77 to -0.47).Very low protein intake was not superior to conventional low protein intake in terms of effect on serum phosphorus (2 studies, 41 participants: MD -0.12 mmol/L, 95% CI -0.50 to 0.25), serum calcium (MD 0.00 mmol/L, 95% CI -0.17 to 0.17), or alkaline phosphatase (MD -22.00 U/L, 95% CI -78.25 to 34.25). PTH was significantly lower in the very low protein intake group (2 studies, 41 participants: MD -69.64 pmol/L, 95% CI -139.83 to 0.54).One study reported no significant difference in the number of deaths between low phosphorus intake and normal diet (279 participants: RR 0.18, 95% CI 0.01 to 3.82). Low phosphorus intake decreased serum phosphorus (2 studies, 359 participants: MD -0.18 mmol/L, 95% CI -0.29 to -0.07; I(2) = 0%).One study reported post-haemodialysis supplements did not increase serum phosphorus compared to normal diet (40 participants: MD 0.12 mmol/L, 95% CI -0.24 to 0.49).One study reported low phosphorus intake plus lanthanum carbonate significantly decreased FGF-23 (19 participants: MD -333.80 RU/mL, 95% CI -526.60 to -141.00), but did not decrease serum phosphorus (19 participants: MD -0.10 mg/dL, 95% CI -0.38 to 0.58) or PTH (19 participants: MD 31.60 pg/mL, 95% CI -29.82 to 93.02). There was limited low quality evidence to indicate that dietary interventions (calcium-enriched bread or low phosphorus/protein intake) may positively affect CKD-MBD by increasing serum calcium, decreasing serum phosphorus, the calcium × phosphate product and FGF-23. Large and well-designed RCTs are needed to evaluate the effects of various interventions for people with CKD-MBD.

Twitter Demographics

The data shown below were collected from the profiles of 20 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 17%
Hungary 1 17%
Unknown 4 67%

Demographic breakdown

Readers by professional status Count As %
Student > Master 25 417%
Unspecified 15 250%
Student > Ph. D. Student 13 217%
Student > Bachelor 12 200%
Researcher 11 183%
Other 34 567%
Readers by discipline Count As %
Medicine and Dentistry 50 833%
Unspecified 24 400%
Nursing and Health Professions 13 217%
Agricultural and Biological Sciences 4 67%
Pharmacology, Toxicology and Pharmaceutical Science 4 67%
Other 15 250%

Attention Score in Context

This research output has an Altmetric Attention Score of 18. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 December 2015.
All research outputs
#769,730
of 12,527,219 outputs
Outputs from Cochrane database of systematic reviews
#2,451
of 8,923 outputs
Outputs of similar age
#21,877
of 246,428 outputs
Outputs of similar age from Cochrane database of systematic reviews
#81
of 245 outputs
Altmetric has tracked 12,527,219 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 8,923 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.2. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 246,428 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 91% of its contemporaries.
We're also able to compare this research output to 245 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.