↓ Skip to main content

Vocal response inhibition is enhanced by anodal tDCS over the right prefrontal cortex

Overview of attention for article published in Experimental Brain Research, September 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
71 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Vocal response inhibition is enhanced by anodal tDCS over the right prefrontal cortex
Published in
Experimental Brain Research, September 2015
DOI 10.1007/s00221-015-4452-0
Pubmed ID
Authors

Leidy J. Castro-Meneses, Blake W. Johnson, Paul F. Sowman

Abstract

Stopping outright (reactive inhibition) and slowing down (proactive inhibition) are types of response inhibition which have mainly been investigated in the manual effector system. This study compared reactive inhibition across manual and vocal effector systems, examined the effects of excitatory anodal transcranial direct current stimulation (anodal tDCS) over the right prefrontal cortex (right-PFC) and looked at the relationship between reactive and proactive inhibition. We hypothesised (1) that vocal reactive inhibition would be less effective than manual reactive inhibition as evidenced by longer stop signal reaction times; (2) that anodal tDCS would enhance both vocal and manual reactive inhibitions and (3) that proactive and reactive inhibitions would be positively related. We tested 14 participants over two sessions (one session with anodal tDCS and one session with sham stimulation) and applied stimulation protocol in the middle of the session, i.e. only during the second of three phases. We used a stop signal task across two stop conditions: relevant and irrelevant stop conditions in which stopping was required or ignored, respectively. We found that reactive inhibition was faster during and immediately after anodal tDCS relative to sham. We also found that greater level of proactive inhibition enhanced reactive inhibition (indexed by shorter stop signal reaction times). These results support the hypothesis that the right-PFC is part of a core network for reactive inhibition and supports previous contention that proactive inhibition is possibly modulated via preactivating the reactive inhibition network.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 71 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 1%
Unknown 70 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 14 20%
Student > Ph. D. Student 11 15%
Researcher 10 14%
Student > Bachelor 9 13%
Student > Doctoral Student 4 6%
Other 9 13%
Unknown 14 20%
Readers by discipline Count As %
Psychology 23 32%
Neuroscience 18 25%
Medicine and Dentistry 3 4%
Social Sciences 2 3%
Computer Science 1 1%
Other 6 8%
Unknown 18 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 October 2015.
All research outputs
#19,015,492
of 23,577,654 outputs
Outputs from Experimental Brain Research
#2,511
of 3,281 outputs
Outputs of similar age
#199,200
of 275,900 outputs
Outputs of similar age from Experimental Brain Research
#35
of 45 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,281 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.1. This one is in the 9th percentile – i.e., 9% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 275,900 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 45 others from the same source and published within six weeks on either side of this one. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.