↓ Skip to main content

Crop pests and predators exhibit inconsistent responses to surrounding landscape composition

Overview of attention for article published in Proceedings of the National Academy of Sciences of the United States of America, August 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (98th percentile)
  • High Attention Score compared to outputs of the same age and source (92nd percentile)

Mentioned by

news
6 news outlets
blogs
3 blogs
twitter
185 tweeters
googleplus
1 Google+ user
reddit
1 Redditor

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
193 Mendeley
Title
Crop pests and predators exhibit inconsistent responses to surrounding landscape composition
Published in
Proceedings of the National Academy of Sciences of the United States of America, August 2018
DOI 10.1073/pnas.1800042115
Pubmed ID
Authors

Daniel S. Karp, Rebecca Chaplin-Kramer, Timothy D. Meehan, Emily A. Martin, Fabrice DeClerck, Heather Grab, Claudio Gratton, Lauren Hunt, Ashley E. Larsen, Alejandra Martínez-Salinas, Megan E. O’Rourke, Adrien Rusch, Katja Poveda, Mattias Jonsson, Jay A. Rosenheim, Nancy A. Schellhorn, Teja Tscharntke, Stephen D. Wratten, Wei Zhang, Aaron L. Iverson, Lynn S. Adler, Matthias Albrecht, Audrey Alignier, Gina M. Angelella, Muhammad Zubair Anjum, Jacques Avelino, Péter Batáry, Johannes M. Baveco, Felix J. J. A. Bianchi, Klaus Birkhofer, Eric W. Bohnenblust, Riccardo Bommarco, Michael J. Brewer, Berta Caballero-López, Yves Carrière, Luísa G. Carvalheiro, Luis Cayuela, Mary Centrella, Aleksandar Ćetković, Dominic Charles Henri, Ariane Chabert, Alejandro C. Costamagna, Aldo De la Mora, Joop de Kraker, Nicolas Desneux, Eva Diehl, Tim Diekötter, Carsten F. Dormann, James O. Eckberg, Martin H. Entling, Daniela Fiedler, Pierre Franck, F. J. Frank van Veen, Thomas Frank, Vesna Gagic, Michael P. D. Garratt, Awraris Getachew, David J. Gonthier, Peter B. Goodell, Ignazio Graziosi, Russell L. Groves, Geoff M. Gurr, Zachary Hajian-Forooshani, George E. Heimpel, John D. Herrmann, Anders S. Huseth, Diego J. Inclán, Adam J. Ingrao, Phirun Iv, Katja Jacot, Gregg A. Johnson, Laura Jones, Marina Kaiser, Joe M. Kaser, Tamar Keasar, Tania N. Kim, Miriam Kishinevsky, Douglas A. Landis, Blas Lavandero, Claire Lavigne, Anne Le Ralec, Debissa Lemessa, Deborah K. Letourneau, Heidi Liere, Yanhui Lu, Yael Lubin, Tim Luttermoser, Bea Maas, Kevi Mace, Filipe Madeira, Viktoria Mader, Anne Marie Cortesero, Lorenzo Marini, Eliana Martinez, Holly M. Martinson, Philippe Menozzi, Matthew G. E. Mitchell, Tadashi Miyashita, Gonzalo A. R. Molina, Marco A. Molina-Montenegro, Matthew E. O’Neal, Itai Opatovsky, Sebaastian Ortiz-Martinez, Michael Nash, Örjan Östman, Annie Ouin, Damie Pak, Daniel Paredes, Soroush Parsa, Hazel Parry, Ricardo Perez-Alvarez, David J. Perović, Julie A. Peterson, Sandrine Petit, Stacy M. Philpott, Manuel Plantegenest, Milan Plećaš, Therese Pluess, Xavier Pons, Simon G. Potts, Richard F. Pywell, David W. Ragsdale, Tatyana A. Rand, Lucie Raymond, Benoît Ricci, Chris Sargent, Jean-Pierre Sarthou, Julia Saulais, Jessica Schäckermann, Nick P. Schmidt, Gudrun Schneider, Christof Schüepp, Frances S. Sivakoff, Henrik G. Smith, Kaitlin Stack Whitney, Sonja Stutz, Zsofia Szendrei, Mayura B. Takada, Hisatomo Taki, Giovanni Tamburini, Linda J. Thomson, Yann Tricault, Noelline Tsafack, Matthias Tschumi, Muriel Valantin-Morison, Mai Van Trinh, Wopke van der Werf, Kerri T. Vierling, Ben P. Werling, Jennifer B. Wickens, Victoria J. Wickens, Ben A. Woodcock, Kris Wyckhuys, Haijun Xiao, Mika Yasuda, Akira Yoshioka, Yi Zou

Abstract

The idea that noncrop habitat enhances pest control and represents a win-win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win-win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies.

Twitter Demographics

The data shown below were collected from the profiles of 185 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 193 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
China 1 <1%
Unknown 192 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 51 26%
Researcher 47 24%
Student > Master 25 13%
Unspecified 19 10%
Student > Bachelor 16 8%
Other 35 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 95 49%
Unspecified 44 23%
Environmental Science 42 22%
Biochemistry, Genetics and Molecular Biology 4 2%
Social Sciences 3 2%
Other 5 3%

Attention Score in Context

This research output has an Altmetric Attention Score of 186. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 December 2018.
All research outputs
#63,618
of 12,525,541 outputs
Outputs from Proceedings of the National Academy of Sciences of the United States of America
#1,610
of 77,939 outputs
Outputs of similar age
#3,195
of 274,184 outputs
Outputs of similar age from Proceedings of the National Academy of Sciences of the United States of America
#66
of 940 outputs
Altmetric has tracked 12,525,541 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 99th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 77,939 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 22.4. This one has done particularly well, scoring higher than 97% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 274,184 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 940 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 92% of its contemporaries.