↓ Skip to main content

Genomic insight into Aquimarina longa SW024T: its ultra-oligotrophic adapting mechanisms and biogeochemical functions

Overview of attention for article published in BMC Genomics, October 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genomic insight into Aquimarina longa SW024T: its ultra-oligotrophic adapting mechanisms and biogeochemical functions
Published in
BMC Genomics, October 2015
DOI 10.1186/s12864-015-2005-3
Pubmed ID
Authors

Tingting Xu, Min Yu, Heyu Lin, Zenghu Zhang, Jiwen Liu, Xiao-Hua Zhang

Abstract

South Pacific Gyre (SPG) is the largest and clearest gyre in the world, where the concentration of surface chlorophyll a and primary production are extremely low. Aquimarina longa SW024(T) was isolated from surface water of the SPG center. To understand how this bacterium could survive in this ultra-oligotrophic oceanic environment and its function in biogeochemical cycle, we sequenced the genome of A. longa SW024(T) and performed extensive genomic analyses. Genomic DNA was extracted and sequenced using Illumina Hiseq 2000 and Miseq platform. Genome annotation, genomic comparison and phylogenetic analyses were performed with the use of multiple bioinformatics tools like: BLAST+ 2.2.24, Glimmer3.0, RAST server, Geneious 4.8.5, ClustalW2 and MEGA5. Physiological and morphological features were tested by bacterial culture, electron microscopy, fluorescence microscopy and exopolysaccharides extraction. Analysis of seven Aquimarina genomes and 30 other genomes of Flavobacteriaceae isolated from seawater showed that most of the strains had low DNA G + C contents, and Aquimarina had larger genomes than other strains. Genome comparison showed varying genomic properties among seven Aquimarina genomes, including genome sizes and gene contents, which may warrant their specific adaptive strategies. Genome of A. longa SW024(T) was further compared with the genomes of two other Aquimarina species which were also isolated from the SPG and A. longa SW024(T) appeared to have much more genes related to replication, recombination and repair. As a copiotroph, A. longa SW024(T) is long in length, and possesses large genome size and diverse transporters. However, it has also evolved many properties to survive in the oligotrophic marine environment. This bacterium grew better on solid medium than in liquid medium, suggesting it may be liable to attach to particle surfaces in order to survive in the nutrient-limiting environment. Gliding motility and the capacity to degrade various polymers possibly allow the bacterium to grow on detritus particles and use polymeric substances as carbon and energy sources. Moreover, genes related to carbon, nitrogen, and sulfur metabolisms were identified, which showed that A. longa SW024(T) might be involved in various elemental cycles. Genomic comparison of Aquimarina genus exhibits comprehensive capabilities of the strains to adapt to diverse marine environments. The genomic characteristics of A. longa SW024(T) reveal that it evolves various strategies to cope with both copiotrophic and ultra-oligotrophic marine environment, which provides a better understanding of the survival abilities of bacteria in prevalent and even extreme oceanic environments. Furthermore, carbon, nitrogen and sulfur utilization of A. longa SW024(T) may represent its potential functions in the global biogeochemical cycle.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 26%
Student > Ph. D. Student 5 22%
Researcher 3 13%
Student > Doctoral Student 2 9%
Student > Master 1 4%
Other 0 0%
Unknown 6 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 26%
Environmental Science 4 17%
Agricultural and Biological Sciences 3 13%
Computer Science 1 4%
Earth and Planetary Sciences 1 4%
Other 1 4%
Unknown 7 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 October 2015.
All research outputs
#20,294,248
of 22,830,751 outputs
Outputs from BMC Genomics
#9,281
of 10,655 outputs
Outputs of similar age
#234,047
of 279,097 outputs
Outputs of similar age from BMC Genomics
#361
of 383 outputs
Altmetric has tracked 22,830,751 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,655 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 279,097 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 383 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.