↓ Skip to main content

Estimating soil heavy metals concentration at large scale using visible and near-infrared reflectance spectroscopy

Overview of attention for article published in Environmental Monitoring and Assessment, August 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Estimating soil heavy metals concentration at large scale using visible and near-infrared reflectance spectroscopy
Published in
Environmental Monitoring and Assessment, August 2018
DOI 10.1007/s10661-018-6898-6
Pubmed ID
Authors

Golayeh Yousefi, Mehdi Homaee, Ali Akbar Norouzi

Abstract

This study was aimed (i) to examine using diffuse reflectance spectra within VNIR region to estimate soil heavy metals concentrations at large scale, (ii) to compare the influence of different pre-processing models on predictive model accuracy, and (iii) to explore the best predictive models. A number of 325 topsoil samples were collected and their spectral data, pH, clay content, organic matter, Ni, and Cu concentrations were determined. To improve spectral data, various pre-processing methods including Savitzky-Golay smoothing filter, Savitzky-Golay smoothing filter with first and second derivatives, and standard normal variant (SNV) were used. Partial least squares regression (PLSR), principal component regression (PCR), and support vector machine regression (SVMR) models were employed to build calibration models for estimating soil heavy metals concentration followed by evaluation of provided predictive models. Results indicated that Cu had stronger correlation coefficients with spectral bands compared to Ni. Cu and Ni demonstrated strongest correlations at wavelengths 1925 and 1393 nm, respectively. Based on RMSE, R2, and RPD statistics, the PLSR model with Savitzky-Golay filter pretreatment provided the most accurate predictions for both Cu and Ni (R2 = 0.905, RMSE = 0.00123, RPD = 2.80 for Ni; R2 = 0.825, RMSE = 0.00467, RPD = 2.04 for Cu) where such prediction was much better for Ni than for Cu. Reasonable results with lower accuracy and stability were obtained for PCR (R2 = 0.742, RMSE = 0.00181, RPD = 1.91 for Ni; R2 = 0.731, RMSE = 0.00578, RPD = 1.65 for Cu) and SVMR (R2 = 0.643, RMSE = 0.00091, RPD = 3.80 for Ni; R2 = 0.505, RMSE = 0.00296, RPD = 3.22 for Cu). We concluded that reflectance spectroscopy technique could be applied as a reliable tool for detection and prediction of soil heavy metals.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 17%
Other 3 10%
Student > Master 2 7%
Lecturer 2 7%
Student > Doctoral Student 2 7%
Other 7 24%
Unknown 8 28%
Readers by discipline Count As %
Environmental Science 5 17%
Agricultural and Biological Sciences 4 14%
Engineering 3 10%
Earth and Planetary Sciences 3 10%
Computer Science 1 3%
Other 3 10%
Unknown 10 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 August 2018.
All research outputs
#21,358,731
of 23,854,458 outputs
Outputs from Environmental Monitoring and Assessment
#2,266
of 2,748 outputs
Outputs of similar age
#292,263
of 333,548 outputs
Outputs of similar age from Environmental Monitoring and Assessment
#33
of 41 outputs
Altmetric has tracked 23,854,458 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,748 research outputs from this source. They receive a mean Attention Score of 3.8. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,548 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 41 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.