↓ Skip to main content

Functional analysis of Paracoccidioides brasiliensis 14-3-3 adhesin expressed in Saccharomyces cerevisiae

Overview of attention for article published in BMC Microbiology, November 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Functional analysis of Paracoccidioides brasiliensis 14-3-3 adhesin expressed in Saccharomyces cerevisiae
Published in
BMC Microbiology, November 2015
DOI 10.1186/s12866-015-0586-2
Pubmed ID
Authors

Patricia Akemi Assato, Julhiany de Fátima da Silva, Haroldo Cesar de Oliveira, Caroline Maria Marcos, Danuza Rossi, Sandro Roberto Valentini, Maria José Soares Mendes-Giannini, Cleslei Fernando Zanelli, Ana Marisa Fusco-Almeida

Abstract

14-3-3 proteins comprise a family of eukaryotic multifunctional proteins involved in several cellular processes. The Pb14-3-3 of Paracoccidioides brasiliensis seems to play an important role in the Paracoccidioides-host interaction. Paracoccidioides brasiliensis is an etiological agent of paracoccidioidomycosis, which is a systemic mycosis that is endemic in Latin America. In the initial steps of the infection, Paracoccidioides spp. synthetizes adhesins that allow it to adhere and invade host cells. Therefore, the aim of this work was to perform a functional analysis of Pb14-3-3 using Saccharomyces cerevisiae as a model. The functional analysis of Pb14-3-3 was performed in S. cerevisiae, and it was found that Pb14-3-3 partially complemented S. cerevisiae proteins Bmh1p and Bmh2p, which are recognized as two yeast 14-3-3 homologues. When we evaluated the adhesion profile of S. cerevisiae transformants, Pb14-3-3 acted as an adhesin in S. cerevisiae; however, Bmh1p did not show this function. The influence of Pb14-3-3 in S. cerevisiae ergosterol pathway was also evaluated and our results showed that Pb14-3-3 up-regulates genes involved in ergosterol biosynthesis. Our data showed that Pb14-3-3 was able to partially complement Bmh1p and Bmh2p proteins in S. cerevisiae; however, we suggest that Pb14-3-3 has a differential role as an adhesin. In addition, Pb-14-3-3 may be involved in Paracoccidioides spp. ergosterol biosynthesis which makes it an interest as a therapeutic target.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 2 33%
Student > Bachelor 2 33%
Professor 1 17%
Student > Ph. D. Student 1 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 33%
Business, Management and Accounting 1 17%
Nursing and Health Professions 1 17%
Immunology and Microbiology 1 17%
Social Sciences 1 17%
Other 0 0%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 November 2015.
All research outputs
#20,295,501
of 22,832,057 outputs
Outputs from BMC Microbiology
#2,689
of 3,191 outputs
Outputs of similar age
#239,103
of 285,322 outputs
Outputs of similar age from BMC Microbiology
#57
of 75 outputs
Altmetric has tracked 22,832,057 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,191 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 285,322 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 75 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.