↓ Skip to main content

Complete genome sequencing and analysis of endophytic Sphingomonas sp. LK11 and its potential in plant growth

Overview of attention for article published in 3 Biotech, August 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#46 of 1,446)
  • High Attention Score compared to outputs of the same age (84th percentile)
  • High Attention Score compared to outputs of the same age and source (94th percentile)

Mentioned by

news
1 news outlet
twitter
5 X users

Citations

dimensions_citation
67 Dimensions

Readers on

mendeley
69 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Complete genome sequencing and analysis of endophytic Sphingomonas sp. LK11 and its potential in plant growth
Published in
3 Biotech, August 2018
DOI 10.1007/s13205-018-1403-z
Pubmed ID
Authors

Sajjad Asaf, Abdul Latif Khan, Muhammad Aaqil Khan, Ahmed Al-Harrasi, In-Jung Lee

Abstract

Our study aimed to elucidate the plant growth-promoting characteristics and the structure and composition of Sphingomonas sp. LK11 genome using the single molecule real-time (SMRT) sequencing technology of Pacific Biosciences. The results revealed that LK11 produces different types of gibberellins (GAs) in pure culture and significantly improves soybean plant growth by influencing endogenous GAs compared with non-inoculated control plants. Detailed genomic analyses revealed that the Sphingomonas sp. LK11 genome consists of a circular chromosome (3.78 Mbp; 66.2% G+C content) and two circular plasmids (122,975 bps and 34,160 bps; 63 and 65% G+C content, respectively). Annotation showed that the LK11 genome consists of 3656 protein-coding genes, 59 tRNAs, and 4 complete rRNA operons. Functional analyses predicted that LK11 encodes genes for phosphate solubilization and nitrate/nitrite ammonification, which are beneficial for promoting plant growth. Genes for production of catalases, superoxide dismutase, and peroxidases that confer resistance to oxidative stress in plants were also identified in LK11. Moreover, genes for trehalose and glycine betaine biosynthesis were also found in LK11 genome. Similarly, Sphingomonas spp. analysis revealed an open pan-genome and a total of 8507 genes were identified in the Sphingomonas spp. pan-genome and about 1356 orthologous genes were found to comprise the core genome. However, the number of genomes analyzed was not enough to describe complete gene sets. Our findings indicated that the genetic makeup of Sphingomonas sp. LK11 can be utilized as an eco-friendly bioresource for cleaning contaminated sites and promoting growth of plants confronted with environmental perturbations.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 69 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 69 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 19%
Researcher 12 17%
Student > Master 8 12%
Other 5 7%
Student > Bachelor 4 6%
Other 8 12%
Unknown 19 28%
Readers by discipline Count As %
Agricultural and Biological Sciences 23 33%
Biochemistry, Genetics and Molecular Biology 10 14%
Environmental Science 7 10%
Engineering 4 6%
Pharmacology, Toxicology and Pharmaceutical Science 1 1%
Other 4 6%
Unknown 20 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 January 2024.
All research outputs
#2,714,312
of 25,782,229 outputs
Outputs from 3 Biotech
#46
of 1,446 outputs
Outputs of similar age
#53,087
of 345,234 outputs
Outputs of similar age from 3 Biotech
#3
of 50 outputs
Altmetric has tracked 25,782,229 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,446 research outputs from this source. They receive a mean Attention Score of 2.9. This one has done particularly well, scoring higher than 96% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 345,234 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 50 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 94% of its contemporaries.