↓ Skip to main content

Formation of the layered conductive magnet CrCl2(pyrazine)2 through redox-active coordination chemistry

Overview of attention for article published in Nature Chemistry, September 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (96th percentile)
  • High Attention Score compared to outputs of the same age and source (85th percentile)

Mentioned by

news
6 news outlets
blogs
3 blogs
twitter
26 X users
facebook
5 Facebook pages

Citations

dimensions_citation
124 Dimensions

Readers on

mendeley
175 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Formation of the layered conductive magnet CrCl2(pyrazine)2 through redox-active coordination chemistry
Published in
Nature Chemistry, September 2018
DOI 10.1038/s41557-018-0107-7
Pubmed ID
Authors

Kasper S. Pedersen, Panagiota Perlepe, Michael L. Aubrey, Daniel N. Woodruff, Sebastian E. Reyes-Lillo, Anders Reinholdt, Laura Voigt, Zheshen Li, Kasper Borup, Mathieu Rouzières, Dumitru Samohvalov, Fabrice Wilhelm, Andrei Rogalev, Jeffrey B. Neaton, Jeffrey R. Long, Rodolphe Clérac

Abstract

The unique properties of graphene, transition-metal dichalcogenides and other two-dimensional (2D) materials have boosted interest in layered coordination solids. In particular, 2D materials that behave as both conductors and magnets could find applications in quantum magnetoelectronics and spintronics. Here, we report the synthesis of CrCl2(pyrazine)2, an air-stable layered solid, by reaction of CrCl2 with pyrazine (pyz). This compound displays a ferrimagnetic order below ∼55 K, reflecting the presence of strong magnetic interactions. Electrical conductivity measurements demonstrate that CrCl2(pyz)2 reaches a conductivity of 32 mS cm-1 at room temperature, which operates through a 2D hopping-based transport mechanism. These properties are induced by the redox-activity of the pyrazine ligand, which leads to a smearing of the Cr 3d and pyrazine π states. We suggest that the combination of redox-active ligands and reducing paramagnetic metal ions represents a general approach towards tuneable 2D materials that consist of charge-neutral layers and exhibit both long-range magnetic order and high electronic conductivity.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 26 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 175 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 175 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 45 26%
Researcher 27 15%
Student > Master 12 7%
Student > Doctoral Student 9 5%
Student > Bachelor 8 5%
Other 30 17%
Unknown 44 25%
Readers by discipline Count As %
Chemistry 85 49%
Physics and Astronomy 13 7%
Chemical Engineering 8 5%
Materials Science 7 4%
Engineering 3 2%
Other 4 2%
Unknown 55 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 76. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 April 2021.
All research outputs
#549,701
of 25,040,629 outputs
Outputs from Nature Chemistry
#422
of 3,276 outputs
Outputs of similar age
#11,965
of 342,957 outputs
Outputs of similar age from Nature Chemistry
#9
of 54 outputs
Altmetric has tracked 25,040,629 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,276 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 35.6. This one has done well, scoring higher than 87% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,957 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 96% of its contemporaries.
We're also able to compare this research output to 54 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 85% of its contemporaries.