↓ Skip to main content

Coordinate systems for supergenomes

Overview of attention for article published in Algorithms for Molecular Biology, September 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Coordinate systems for supergenomes
Published in
Algorithms for Molecular Biology, September 2018
DOI 10.1186/s13015-018-0133-4
Pubmed ID
Authors

Fabian Gärtner, Christian Höner zu Siederdissen, Lydia Müller, Peter F. Stadler

Abstract

Genome sequences and genome annotation data have become available at ever increasing rates in response to the rapid progress in sequencing technologies. As a consequence the demand for methods supporting comparative, evolutionary analysis is also growing. In particular, efficient tools to visualize-omics data simultaneously for multiple species are sorely lacking. A first and crucial step in this direction is the construction of a common coordinate system. Since genomes not only differ by rearrangements but also by large insertions, deletions, and duplications, the use of a single reference genome is insufficient, in particular when the number of species becomes large. The computational problem then becomes to determine an order and orientations of optimal local alignments that are as co-linear as possible with all the genome sequences. We first review the most prominent approaches to model the problem formally and then proceed to showing that it can be phrased as a particular variant of the Betweenness Problem. It is NP hard in general. As exact solutions are beyond reach for the problem sizes of practical interest, we introduce a collection of heuristic simplifiers to resolve ordering conflicts. Benchmarks on real-life data ranging from bacterial to fly genomes demonstrate the feasibility of computing good common coordinate systems.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 20%
Student > Ph. D. Student 4 16%
Student > Bachelor 3 12%
Professor > Associate Professor 2 8%
Student > Doctoral Student 1 4%
Other 4 16%
Unknown 6 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 24%
Biochemistry, Genetics and Molecular Biology 5 20%
Computer Science 3 12%
Unspecified 1 4%
Chemical Engineering 1 4%
Other 2 8%
Unknown 7 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 October 2018.
All research outputs
#15,019,263
of 23,103,903 outputs
Outputs from Algorithms for Molecular Biology
#127
of 264 outputs
Outputs of similar age
#202,389
of 340,828 outputs
Outputs of similar age from Algorithms for Molecular Biology
#2
of 2 outputs
Altmetric has tracked 23,103,903 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 264 research outputs from this source. They receive a mean Attention Score of 3.2. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,828 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 2 others from the same source and published within six weeks on either side of this one.