↓ Skip to main content

RbAp48 is essential for viability of vertebrate cells and plays a role in chromosome stability

Overview of attention for article published in Chromosome Research, December 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
RbAp48 is essential for viability of vertebrate cells and plays a role in chromosome stability
Published in
Chromosome Research, December 2015
DOI 10.1007/s10577-015-9510-8
Pubmed ID
Authors

Pasjan Satrimafitrah, Hirak Kumar Barman, Ahyar Ahmad, Hideki Nishitoh, Tatsuo Nakayama, Tatsuo Fukagawa, Yasunari Takami

Abstract

RbAp46/48, histone chaperone, is a family of evolutionarily conserved WD40 repeat-containing proteins, which are involved in various chromatin-metabolizing processes, but their in vivo functional relevance is yet unclear. In order to examine the biological role of pRbAp48 in chicken DT40 cells, we generated a tetracycline-inducible system for conditional RbAp48-knockout cells. Depletion of RbAp48 led to delayed S phase progression associated with slow DNA synthesis and nascent nucleosome formation, followed by accumulation in G2/M phase, finally leading to cell death. Prior to cell death, these cells exhibited aberrant mitosis such as highly condensed and abnormal chromosome alignment on the metaphase plate, leading to chromosome missegregation. Depletion of RbAp48 also caused dissociation of heterochromatin protein 1 (HP1) from pericentromeric heterochromatin. Furthermore, depletion of RbAp48 from cells led to elevated levels of acetylation and slightly decreased levels of methylation, specifically at Lys-9 residue of histone H3. These results suggest that RbAp48 plays an important role in chromosome stability for proper organization of heterochromatin structure through the regulation of epigenetic mark.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 50 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 18%
Student > Master 6 12%
Student > Bachelor 6 12%
Lecturer 4 8%
Student > Postgraduate 3 6%
Other 9 18%
Unknown 13 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 26%
Agricultural and Biological Sciences 7 14%
Nursing and Health Professions 5 10%
Medicine and Dentistry 2 4%
Mathematics 1 2%
Other 7 14%
Unknown 15 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 December 2015.
All research outputs
#15,351,847
of 22,835,198 outputs
Outputs from Chromosome Research
#347
of 508 outputs
Outputs of similar age
#228,893
of 390,233 outputs
Outputs of similar age from Chromosome Research
#5
of 17 outputs
Altmetric has tracked 22,835,198 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 508 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.5. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 390,233 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.