↓ Skip to main content

Choice of satellite imagery and attribution of changes to disturbance type strongly affects forest carbon balance estimates

Overview of attention for article published in Carbon Balance and Management, December 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
11 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
73 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Choice of satellite imagery and attribution of changes to disturbance type strongly affects forest carbon balance estimates
Published in
Carbon Balance and Management, December 2015
DOI 10.1186/s13021-015-0041-6
Pubmed ID
Authors

Vanessa S. Mascorro, Nicholas C. Coops, Werner A. Kurz, Marcela Olguín

Abstract

Remote sensing products can provide regular and consistent observations of the Earth´s surface to monitor and understand the condition and change of forest ecosystems and to inform estimates of terrestrial carbon dynamics. Yet, challenges remain to select the appropriate satellite data source for ecosystem carbon monitoring. In this study we examine the impacts of three attributes of four remote sensing products derived from Landsat, Landsat-SPOT, and MODIS satellite imagery on estimates of greenhouse gas emissions and removals: (1) the spatial resolution (30 vs. 250 m), (2) the temporal resolution (annual vs. multi-year observations), and (3) the attribution of forest cover changes to disturbance types using supplementary data. With a spatially-explicit version of the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), we produced annual estimates of carbon fluxes from 2002 to 2010 over a 3.2 million ha forested region in the Yucatan Peninsula, Mexico. The cumulative carbon balance for the 9-year period differed by 30.7 million MgC (112.5 million Mg CO2e) among the four remote sensing products used. The cumulative difference between scenarios with and without attribution of disturbance types was over 5 million Mg C for a single Landsat scene. Uncertainty arising from activity data (rates of land-cover changes) can be reduced by, in order of priority, increasing spatial resolution from 250 to 30 m, obtaining annual observations of forest disturbances, and by attributing land-cover changes by disturbance type. Even missing a single year in the land-cover observations can lead to substantial errors in ecosystems with rapid forest regrowth, such as the Yucatan Peninsula.

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 73 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Canada 1 1%
Unknown 72 99%

Demographic breakdown

Readers by professional status Count As %
Researcher 16 22%
Student > Ph. D. Student 13 18%
Student > Master 13 18%
Professor 5 7%
Other 5 7%
Other 9 12%
Unknown 12 16%
Readers by discipline Count As %
Environmental Science 26 36%
Earth and Planetary Sciences 10 14%
Engineering 8 11%
Agricultural and Biological Sciences 6 8%
Social Sciences 3 4%
Other 2 3%
Unknown 18 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 August 2020.
All research outputs
#4,477,006
of 22,835,198 outputs
Outputs from Carbon Balance and Management
#78
of 236 outputs
Outputs of similar age
#76,876
of 390,233 outputs
Outputs of similar age from Carbon Balance and Management
#2
of 6 outputs
Altmetric has tracked 22,835,198 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 236 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.8. This one has gotten more attention than average, scoring higher than 66% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 390,233 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 6 others from the same source and published within six weeks on either side of this one. This one has scored higher than 4 of them.