↓ Skip to main content

S100A4-neutralizing antibody suppresses spontaneous tumor progression, pre-metastatic niche formation and alters T-cell polarization balance

Overview of attention for article published in BMC Cancer, February 2015
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (69th percentile)
  • Good Attention Score compared to outputs of the same age and source (74th percentile)

Mentioned by

twitter
1 X user
patent
2 patents

Citations

dimensions_citation
51 Dimensions

Readers on

mendeley
49 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
S100A4-neutralizing antibody suppresses spontaneous tumor progression, pre-metastatic niche formation and alters T-cell polarization balance
Published in
BMC Cancer, February 2015
DOI 10.1186/s12885-015-1034-2
Pubmed ID
Authors

Birgitte Grum-Schwensen, Jörg Klingelhöfer, Mette Beck, Charlotte Menné Bonefeld, Petra Hamerlik, Per Guldberg, Mariam Grigorian, Eugene Lukanidin, Noona Ambartsumian

Abstract

The tumor microenvironment plays a determinative role in stimulating tumor progression and metastasis. Notably, tumor-stroma signals affect the pattern of infiltrated immune cells and the profile of tumor-released cytokines. Among the known molecules that are engaged in stimulating the metastatic spread of tumor cells is the S100A4 protein. S100A4 is known as an inducer of inflammatory processes and has been shown to attract T-cells to the primary tumor and to the pre-metastatic niche. The present study aims to examine the immunomodulatory role of S100A4 in vivo and in vitro and assess the mode of action of 6B12, a S100A4 neutralizing antibody. The therapeutic effect of the 6B12 antibody was evaluated in two different mouse models. First, in a model of spontaneous breast cancer we assessed the dynamics of tumor growth and metastasis. Second, in a model of metastatic niche formation we determined the expression of metastatic niche markers. The levels of cytokine expression were assessed using antibody as well as PCR arrays and the results confirmed by qRT-PCR and ELISA. T-cell phenotyping and in vitro differentiation analyses were performed by flow cytometry. We show that the S100A4 protein alters the expression of transcription factor and signal transduction pathway genes involved in the T-cell lineage differentiation. T-cells challenged with S100A4 demonstrated reduced proportion of Th1-polarized cells shifting the Th1/Th2 balance towards the Th2 pro-tumorigenic phenotype. The 6B12 antibody restored the Th1/Th2 balance. Furthermore, we provide evidence that the 6B12 antibody deploys its anti-metastatic effect, by suppressing the attraction of T-cells to the site of primary tumor and pre-metastatic niche. This was associated with delayed primary tumor growth, decreased vessel density and inhibition of metastases. The S100A4 blocking antibody (6B12) reduces tumor growth and metastasis in a model of spontaneous breast cancer. The 6B12 antibody treatment inhibits T cell accumulation at the primary and pre-metastatic tumor sites. The 6B12 antibody acts as an immunomodulatory agent and thus supports the view that the 6B12 antibody is a promising therapeutic candidate to fight cancer.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 49 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 49 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 29%
Researcher 10 20%
Student > Master 4 8%
Student > Doctoral Student 3 6%
Professor 3 6%
Other 7 14%
Unknown 8 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 22%
Medicine and Dentistry 11 22%
Biochemistry, Genetics and Molecular Biology 11 22%
Engineering 3 6%
Arts and Humanities 1 2%
Other 2 4%
Unknown 10 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 August 2022.
All research outputs
#7,500,672
of 23,577,654 outputs
Outputs from BMC Cancer
#2,027
of 8,530 outputs
Outputs of similar age
#105,294
of 361,308 outputs
Outputs of similar age from BMC Cancer
#30
of 133 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 8,530 research outputs from this source. They receive a mean Attention Score of 4.4. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 361,308 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.
We're also able to compare this research output to 133 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.