↓ Skip to main content

Mechanisms underlying epigenetic and transcriptional heterogeneity in Chinese hamster ovary (CHO) cell lines

Overview of attention for article published in BMC Biotechnology, January 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
46 Dimensions

Readers on

mendeley
136 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mechanisms underlying epigenetic and transcriptional heterogeneity in Chinese hamster ovary (CHO) cell lines
Published in
BMC Biotechnology, January 2016
DOI 10.1186/s12896-016-0238-0
Pubmed ID
Authors

Nathalie Veith, Holger Ziehr, Roderick A. F. MacLeod, Stella Marie Reamon-Buettner

Abstract

Recombinant cell lines developed for therapeutic antibody production often suffer instability or lose recombinant protein expression during long-term culture. Heterogeneous gene expression among cell line subclones may result from epigenetic modifications of DNA or histones, the protein component of chromatin. We thus investigated in such cell lines, DNA methylation and the chromatin environment along the human eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) promoter in an antibody protein-expression vector which was integrated into the Chinese hamster ovary (CHO) cell line genome. We analyzed four PT1-CHO cell lines which exhibited losses of protein expression at advanced passage number (>P35) growing in adherent conditions and in culture medium with 10 % FCS. These cell lines exhibited different integration sites and transgene copy numbers as determined by fluorescence in situ hybridization (FISH) and quantitative PCR (qPCR), respectively. By qRT-PCR, we analyzed the recombinant mRNA expression and correlated it with DNA methylation and with results from various approaches interrogating the chromatin landscape along the EEF1A1 promoter region. Each PT1-CHO cell line displayed specific epigenetic signatures or chromatin marks correlating with recombinant mRNA expression. The cell line with the lowest recombinant mRNA expression (PT1-1) was characterized by the highest nucleosome occupancy and displayed the lowest enrichment for histone marks associated with active transcription. In contrast, the cell line with the highest recombinant mRNA expression (PT1-55) exhibited the highest numbers of formaldehyde-assisted isolation of regulatory elements (FAIRE)-enriched regions, and was marked by enrichment for histone modifications H3K9ac and H3K9me3. Another cell line with the second highest recombinant mRNA transcription and the most stable protein expression (PT1-7) had the highest enrichments of the histone variants H3.3 and H2A.Z, and the histone modification H3K9ac. A further cell line (PT1-30) scored the highest enrichments for the bivalent marks H3K4me3 and H3K27me3. Finally, DNA methylation made a contribution, but only in the culture medium with reduced FCS or in a different expression vector. Our results suggest that the chromatin state along the EEF1A1 promoter region can help predict recombinant mRNA expression, and thus may assist in selecting desirable clones during cell line development for protein production.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 136 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Denmark 1 <1%
Slovenia 1 <1%
Unknown 134 99%

Demographic breakdown

Readers by professional status Count As %
Researcher 32 24%
Student > Ph. D. Student 27 20%
Student > Master 17 13%
Student > Bachelor 16 12%
Student > Postgraduate 5 4%
Other 10 7%
Unknown 29 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 39 29%
Biochemistry, Genetics and Molecular Biology 38 28%
Engineering 11 8%
Chemical Engineering 7 5%
Pharmacology, Toxicology and Pharmaceutical Science 4 3%
Other 6 4%
Unknown 31 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 February 2018.
All research outputs
#14,832,901
of 22,840,638 outputs
Outputs from BMC Biotechnology
#647
of 935 outputs
Outputs of similar age
#220,070
of 395,188 outputs
Outputs of similar age from BMC Biotechnology
#9
of 25 outputs
Altmetric has tracked 22,840,638 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 935 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.8. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 395,188 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 25 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.