↓ Skip to main content

GEP analysis validates high risk MDS and acute myeloid leukemia post MDS mice models and highlights novel dysregulated pathways

Overview of attention for article published in Journal of Hematology & Oncology, January 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
GEP analysis validates high risk MDS and acute myeloid leukemia post MDS mice models and highlights novel dysregulated pathways
Published in
Journal of Hematology & Oncology, January 2016
DOI 10.1186/s13045-016-0235-8
Pubmed ID
Authors

Laura Guerenne, Stéphanie Beurlet, Mohamed Said, Petra Gorombei, Carole Le Pogam, Fabien Guidez, Pierre de la Grange, Nader Omidvar, Valérie Vanneaux, Ken Mills, Ghulam J Mufti, Laure Sarda-Mantel, Maria Elena Noguera, Marika Pla, Pierre Fenaux, Rose Ann Padua, Christine Chomienne, Patricia Krief

Abstract

In spite of the recent discovery of genetic mutations in most myelodysplasic (MDS) patients, the pathophysiology of these disorders still remains poorly understood, and only few in vivo models are available to help unravel the disease. We performed global specific gene expression profiling and functional pathway analysis in purified Sca1+ cells of two MDS transgenic mouse models that mimic human high-risk MDS (HR-MDS) and acute myeloid leukemia (AML) post MDS, with NRASD12 and BCL2 transgenes under the control of different promoters MRP8NRASD12/tethBCL-2 or MRP8[NRASD12/hBCL-2], respectively. Analysis of dysregulated genes that were unique to the diseased HR-MDS and AML post MDS mice and not their founder mice pointed first to pathways that had previously been reported in MDS patients, including DNA replication/damage/repair, cell cycle, apoptosis, immune responses, and canonical Wnt pathways, further validating these models at the gene expression level. Interestingly, pathways not previously reported in MDS were discovered. These included dysregulated genes of noncanonical Wnt pathways and energy and lipid metabolisms. These dysregulated genes were not only confirmed in a different independent set of BM and spleen Sca1+ cells from the MDS mice but also in MDS CD34+ BM patient samples. These two MDS models may thus provide useful preclinical models to target pathways previously identified in MDS patients and to unravel novel pathways highlighted by this study.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 4%
Unknown 22 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 17%
Researcher 4 17%
Student > Master 4 17%
Professor > Associate Professor 2 9%
Student > Doctoral Student 1 4%
Other 2 9%
Unknown 6 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 30%
Biochemistry, Genetics and Molecular Biology 5 22%
Mathematics 1 4%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Neuroscience 1 4%
Other 1 4%
Unknown 7 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 January 2016.
All research outputs
#18,437,241
of 22,842,950 outputs
Outputs from Journal of Hematology & Oncology
#926
of 1,192 outputs
Outputs of similar age
#287,100
of 396,850 outputs
Outputs of similar age from Journal of Hematology & Oncology
#15
of 23 outputs
Altmetric has tracked 22,842,950 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,192 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.7. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 396,850 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.