↓ Skip to main content

Fish Hearing and Bioacoustics

Overview of attention for book
Cover of 'Fish Hearing and Bioacoustics'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Fishy Hearing: A Short Biography of Arthur N. Popper, PhD.
  3. Altmetric Badge
    Chapter 2 A Most Interesting Man of Science: The Life and Research of Richard Rozzell Fay.
  4. Altmetric Badge
    Chapter 3 It Started in Hawai'i Kai: Reminiscences of 43 Years (and Counting) of Collaboration and Friendship.
  5. Altmetric Badge
    Chapter 4 A Soliloquy for Art and Dick.
  6. Altmetric Badge
    Chapter 5 Acoustic Communication in Butterflyfishes: Anatomical Novelties, Physiology, Evolution, and Behavioral Ecology.
  7. Altmetric Badge
    Chapter 6 Convergent Aspects of Acoustic Communication in Darters, Sculpins, and Gobies.
  8. Altmetric Badge
    Chapter 7 Directional Hearing and Sound Source Localization in Fishes
  9. Altmetric Badge
    Chapter 8 Revisiting Psychoacoustic Methods for the Assessment of Fish Hearing.
  10. Altmetric Badge
    Chapter 9 Hearing in Cavefishes
  11. Altmetric Badge
    Chapter 10 What the Toadfish Ear Tells the Toadfish Brain About Sound.
  12. Altmetric Badge
    Chapter 11 Comparison of Electrophysiological Auditory Measures in Fishes.
  13. Altmetric Badge
    Chapter 12 The Potential Overlapping Roles of the Ear and Lateral Line in Driving “Acoustic” Responses
  14. Altmetric Badge
    Chapter 13 Multimodal Sensory Input in the Utricle and Lateral Line of the Toadfish, Opsanus tau.
  15. Altmetric Badge
    Chapter 14 Development of Structure and Sensitivity of the Fish Inner Ear.
  16. Altmetric Badge
    Chapter 15 Peripheral Hearing Structures in Fishes: Diversity and Sensitivity of Catfishes and Cichlids.
  17. Altmetric Badge
    Chapter 16 Diversity of Inner Ears in Fishes: Possible Contribution Towards Hearing Improvements and Evolutionary Considerations
  18. Altmetric Badge
    Chapter 17 Causes and Consequences of Sensory Hair Cell Damage and Recovery in Fishes.
  19. Altmetric Badge
    Chapter 18 Chemical Ototoxicity of the Fish Inner Ear and Lateral Line.
  20. Altmetric Badge
    Chapter 19 Neuroanatomical Evidence for Catecholamines as Modulators of Audition and Acoustic Behavior in a Vocal Teleost.
Attention for Chapter 18: Chemical Ototoxicity of the Fish Inner Ear and Lateral Line.
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
36 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Chemical Ototoxicity of the Fish Inner Ear and Lateral Line.
Chapter number 18
Book title
Fish Hearing and Bioacoustics
Published in
Advances in experimental medicine and biology, January 2016
DOI 10.1007/978-3-319-21059-9_18
Pubmed ID
Book ISBNs
978-3-31-921058-2, 978-3-31-921059-9
Authors

Coffin, Allison B, Ramcharitar, John, Allison B. Coffin, John Ramcharitar

Editors

Joseph A. Sisneros

Abstract

Hair cell-driven mechanosensory systems are crucial for successful execution of a number of behaviors in fishes, and have emerged as good models for exploring questions relevant to human hearing. This review focuses on ototoxic effects in the inner ear and lateral line system of fishes. We specifically examine studies where chemical ototoxins such as aminoglycoside antibiotics have been employed as tools to disable the lateral line. Lateral line ablation results in alterations to feeding behavior and orientation to water current in a variety of species. However, neither behavior is abolished in the presence of additional sensory cues, supporting the hypothesis that many fish behaviors are driven by multisensory integration. Within biomedical research, the larval zebrafish lateral line has become an important model system for understanding signaling mechanisms that contribute to hair cell death and for developing novel pharmacological therapies that protect hair cells from ototoxic damage. Furthermore, given that fishes robustly regenerate damaged hair cells, ototoxin studies in fishes have broadened our understanding of the molecular and genetic events in an innately regenerative system, offering potential targets for mammalian hair cell regeneration. Collectively, studies of fish mechanosensory systems have yielded insight into fish behavior and in mechanisms of hair cell death, protection, and regeneration.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 17%
Student > Bachelor 3 10%
Other 3 10%
Student > Master 3 10%
Student > Ph. D. Student 2 7%
Other 4 14%
Unknown 9 31%
Readers by discipline Count As %
Medicine and Dentistry 6 21%
Agricultural and Biological Sciences 4 14%
Neuroscience 3 10%
Biochemistry, Genetics and Molecular Biology 3 10%
Pharmacology, Toxicology and Pharmaceutical Science 2 7%
Other 2 7%
Unknown 9 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 November 2015.
All research outputs
#18,429,829
of 22,831,537 outputs
Outputs from Advances in experimental medicine and biology
#3,314
of 4,950 outputs
Outputs of similar age
#284,422
of 393,555 outputs
Outputs of similar age from Advances in experimental medicine and biology
#284
of 443 outputs
Altmetric has tracked 22,831,537 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,950 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,555 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 443 others from the same source and published within six weeks on either side of this one. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.