↓ Skip to main content

Risk estimates of mortality attributed to low concentrations of ambient fine particulate matter in the Canadian community health survey cohort

Overview of attention for article published in Environmental Health, February 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (91st percentile)
  • Good Attention Score compared to outputs of the same age and source (73rd percentile)

Mentioned by

policy
5 policy sources
twitter
4 X users
facebook
2 Facebook pages
video
1 YouTube creator

Readers on

mendeley
144 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Risk estimates of mortality attributed to low concentrations of ambient fine particulate matter in the Canadian community health survey cohort
Published in
Environmental Health, February 2016
DOI 10.1186/s12940-016-0111-6
Pubmed ID
Authors

Lauren Pinault, Michael Tjepkema, Daniel L. Crouse, Scott Weichenthal, Aaron van Donkelaar, Randall V. Martin, Michael Brauer, Hong Chen, Richard T. Burnett

Abstract

Understanding the shape of the relationship between long-term exposure to ambient fine particulate matter (PM2.5) concentrations and health risks is critical for health impact and risk assessment. Studies evaluating the health risks of exposure to low concentrations of PM2.5 are limited. Further, many existing studies lack individual-level information on potentially important behavioural confounding factors. A prospective cohort study was conducted among a subset of participants in a cohort that linked respondents of the Canadian Community Health Survey to mortality (n = 299,500) with satellite-derived ambient PM2.5 estimates. Participants enrolled between 2000 and 2008 were followed to date of death or December 31, 2011. Cox proportional hazards models were used to estimate hazard ratios (HRs) for mortality attributed to PM2.5 exposure, adjusted for individual-level and contextual covariates, including smoking behaviour and body mass index (BMI). Approximately 26,300 non-accidental deaths, of which 32.5 % were due to circulatory disease and 9.1 % were due to respiratory disease, occurred during the follow-up period. Ambient PM2.5 exposures were relatively low (mean = 6.3 μg/m(3)), yet each 10 μg/m(3) increase in exposure was associated with increased risks of non-accidental (HR = 1.26; 95 % CI: 1.19-1.34), circulatory disease (HR = 1.19; 95 % CI: 1.07-1.31), and respiratory disease mortality (HR = 1.52; 95 % CI: 1.26-1.84) in fully adjusted models. Higher hazard ratios were observed for respiratory mortality among respondents who never smoked (HR = 1.97; 95 % CI: 1.24-3.13 vs. HR = 1.45; 95 % CI: 1.17-1.79 for ever smokers), and among obese (BMI ≥ 30) respondents (HR = 1.76; 95 % CI: 1.15-2.69 vs. HR = 1.41; 95 % CI: 1.04-1.91 for normal weight respondents), though differences between groups were not statistically significant. A threshold analysis for non-accidental mortality estimated a threshold concentration of 0 μg/m(3) (+95 % CI = 4.5 μg/m(3)). Increased risks of non-accidental, circulatory, and respiratory mortality were observed even at very low concentrations of ambient PM2.5. HRs were generally greater than most literature values, and adjusting for behavioural covariates served to reduce HR estimates slightly.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 144 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Italy 1 <1%
Unknown 143 99%

Demographic breakdown

Readers by professional status Count As %
Researcher 31 22%
Student > Ph. D. Student 27 19%
Student > Master 16 11%
Student > Doctoral Student 9 6%
Student > Bachelor 9 6%
Other 21 15%
Unknown 31 22%
Readers by discipline Count As %
Environmental Science 32 22%
Medicine and Dentistry 18 13%
Nursing and Health Professions 13 9%
Engineering 6 4%
Earth and Planetary Sciences 6 4%
Other 30 21%
Unknown 39 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 19. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 June 2023.
All research outputs
#1,989,083
of 25,663,438 outputs
Outputs from Environmental Health
#393
of 1,611 outputs
Outputs of similar age
#34,599
of 411,573 outputs
Outputs of similar age from Environmental Health
#12
of 46 outputs
Altmetric has tracked 25,663,438 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,611 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 38.0. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 411,573 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 91% of its contemporaries.
We're also able to compare this research output to 46 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.