↓ Skip to main content

Structural basis of interprotein electron transfer in bacterial sulfite oxidation

Overview of attention for article published in eLife, December 2015
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Structural basis of interprotein electron transfer in bacterial sulfite oxidation
Published in
eLife, December 2015
DOI 10.7554/elife.09066
Pubmed ID
Authors

Aaron P McGrath, Elise L Laming, G Patricia Casas Garcia, Marc Kvansakul, J Mitchell Guss, Jill Trewhella, Benoit Calmes, Paul V Bernhardt, Graeme R Hanson, Ulrike Kappler, Megan J Maher

Abstract

Interprotein electron transfer underpins the essential processes of life and relies on the formation of specific, yet transient protein-protein interactions. In biological systems, the detoxification of sulfite is catalyzed by the sulfite-oxidizing enzymes (SOEs), which interact with an electron acceptor for catalytic turnover. Here, we report the structural and functional analyses of the SOE SorT from Sinorhizobium meliloti and its cognate electron acceptor SorU. Kinetic and thermodynamic analyses of the SorT/SorU interaction show the complex is dynamic in solution, and that the proteins interact with Kd = 13.5 ± 0.8 μM. The crystal structures of the oxidized SorT and SorU, both in isolation and in complex, reveal the interface to be remarkably electrostatic, with an unusually large number of direct hydrogen bonding interactions. The assembly of the complex is accompanied by an adjustment in the structure of SorU, and conformational sampling provides a mechanism for dissociation of the SorT/SorU assembly.

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 16%
Researcher 3 16%
Professor 2 11%
Unspecified 2 11%
Student > Master 2 11%
Other 7 37%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 26%
Unspecified 5 26%
Agricultural and Biological Sciences 4 21%
Chemistry 3 16%
Environmental Science 2 11%
Other 0 0%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 February 2016.
All research outputs
#6,275,383
of 7,269,211 outputs
Outputs from eLife
#3,210
of 3,347 outputs
Outputs of similar age
#237,907
of 283,157 outputs
Outputs of similar age from eLife
#339
of 355 outputs
Altmetric has tracked 7,269,211 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,347 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 28.2. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 283,157 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 355 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.