↓ Skip to main content

Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis

Overview of attention for article published in Molecular Neurodegeneration, February 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

news
1 news outlet
twitter
6 X users
facebook
1 Facebook page

Citations

dimensions_citation
39 Dimensions

Readers on

mendeley
112 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis
Published in
Molecular Neurodegeneration, February 2016
DOI 10.1186/s13024-016-0085-4
Pubmed ID
Authors

Raffaele Ferrari, Paola Forabosco, Jana Vandrovcova, Juan A. Botía, Sebastian Guelfi, Jason D. Warren, UK Brain Expression Consortium (UKBEC), Parastoo Momeni, Michael E. Weale, Mina Ryten, John Hardy

Abstract

In frontotemporal dementia (FTD) there is a critical lack in the understanding of biological and molecular mechanisms involved in disease pathogenesis. The heterogeneous genetic features associated with FTD suggest that multiple disease-mechanisms are likely to contribute to the development of this neurodegenerative condition. We here present a systems biology approach with the scope of i) shedding light on the biological processes potentially implicated in the pathogenesis of FTD and ii) identifying novel potential risk factors for FTD. We performed a gene co-expression network analysis of microarray expression data from 101 individuals without neurodegenerative diseases to explore regional-specific co-expression patterns in the frontal and temporal cortices for 12 genes (MAPT, GRN, CHMP2B, CTSC, HLA-DRA, TMEM106B, C9orf72, VCP, UBQLN2, OPTN, TARDBP and FUS) associated with FTD and we then carried out gene set enrichment and pathway analyses, and investigated known protein-protein interactors (PPIs) of FTD-genes products. Gene co-expression networks revealed that several FTD-genes (such as MAPT and GRN, CTSC and HLA-DRA, TMEM106B, and C9orf72, VCP, UBQLN2 and OPTN) were clustering in modules of relevance in the frontal and temporal cortices. Functional annotation and pathway analyses of such modules indicated enrichment for: i) DNA metabolism, i.e. transcription regulation, DNA protection and chromatin remodelling (MAPT and GRN modules); ii) immune and lysosomal processes (CTSC and HLA-DRA modules), and; iii) protein meta/catabolism (C9orf72, VCP, UBQLN2 and OPTN, and TMEM106B modules). PPI analysis supported the results of the functional annotation and pathway analyses. This work further characterizes known FTD-genes and elaborates on their biological relevance to disease: not only do we indicate likely impacted regional-specific biological processes driven by FTD-genes containing modules, but also do we suggest novel potential risk factors among the FTD-genes interactors as targets for further mechanistic characterization in hypothesis driven cell biology work.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 112 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 2 2%
United Kingdom 1 <1%
United States 1 <1%
Unknown 108 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 23 21%
Student > Ph. D. Student 19 17%
Student > Master 12 11%
Student > Bachelor 12 11%
Student > Postgraduate 6 5%
Other 22 20%
Unknown 18 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 24 21%
Neuroscience 18 16%
Biochemistry, Genetics and Molecular Biology 17 15%
Medicine and Dentistry 13 12%
Computer Science 6 5%
Other 13 12%
Unknown 21 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 May 2016.
All research outputs
#2,575,025
of 23,577,761 outputs
Outputs from Molecular Neurodegeneration
#329
of 875 outputs
Outputs of similar age
#42,032
of 300,494 outputs
Outputs of similar age from Molecular Neurodegeneration
#10
of 20 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 875 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.9. This one has gotten more attention than average, scoring higher than 61% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,494 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.