↓ Skip to main content

Genome-wide analysis of DNA methylation and gene expression defines molecular characteristics of Crohn’s disease-associated fibrosis

Overview of attention for article published in Clinical Epigenetics, March 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (76th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

twitter
14 X users

Citations

dimensions_citation
55 Dimensions

Readers on

mendeley
101 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide analysis of DNA methylation and gene expression defines molecular characteristics of Crohn’s disease-associated fibrosis
Published in
Clinical Epigenetics, March 2016
DOI 10.1186/s13148-016-0193-6
Pubmed ID
Authors

Tammy Sadler, Jeffrey M. Bhasin, Yaomin Xu, Jill Barnholz-Sloan, Yanwen Chen, Angela H. Ting, Eleni Stylianou

Abstract

Fibrosis of the intestine is a common and poorly understood complication of Crohn's disease (CD) characterized by excessive deposition of extracellular matrix and accompanied by narrowing and obstruction of the gut lumen. Defining the molecular characteristics of this fibrotic disorder is a vital step in the development of specific prediction, prevention, and treatment strategies. Previous epigenetic studies indicate that alterations in DNA methylation could explain the mechanism by which mesenchymal cells adopt the requisite pro-fibrotic phenotype that promotes fibrosis progression. However, to date, genome-wide analysis of the DNA methylome of any type of human fibrosis is lacking. We employed an unbiased approach using deep sequencing to define the DNA methylome and transcriptome of purified fibrotic human intestinal fibroblasts (HIF) from the colons of patients with fibrostenotic CD. When compared with normal fibroblasts, we found that the majority of differential DNA methylation was within introns and intergenic regions and not associated with CpG islands. Only a low percentage occurred in the promoters and exons of genes. Integration of the DNA methylome and transcriptome identified regions in three genes that inversely correlated with gene expression: wingless-type mouse mammary tumor virus integration site family, member 2B (WNT2B) and two eicosanoid synthesis pathway enzymes (prostacyclin synthase and prostaglandin D2 synthase). These findings were independently validated by RT-PCR and bisulfite sequencing. Network analysis of the data also identified candidate molecular interactions relevant to fibrosis pathology. Our definition of a genome-wide fibrosis-specific DNA methylome provides new gene networks and epigenetic states by which to understand mechanisms of pathological gene expression that lead to fibrosis. Our data also provide a basis for development of new fibrosis-specific therapies, as genes dysregulated in fibrotic Crohn's disease, following functional validation, can serve as new therapeutic targets.

X Demographics

X Demographics

The data shown below were collected from the profiles of 14 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 101 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
Unknown 100 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 19%
Student > Master 17 17%
Researcher 16 16%
Student > Bachelor 11 11%
Other 6 6%
Other 17 17%
Unknown 15 15%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 29 29%
Medicine and Dentistry 22 22%
Agricultural and Biological Sciences 14 14%
Immunology and Microbiology 8 8%
Environmental Science 1 <1%
Other 7 7%
Unknown 20 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 March 2016.
All research outputs
#4,290,278
of 23,305,591 outputs
Outputs from Clinical Epigenetics
#298
of 1,289 outputs
Outputs of similar age
#65,984
of 301,502 outputs
Outputs of similar age from Clinical Epigenetics
#12
of 31 outputs
Altmetric has tracked 23,305,591 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,289 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.1. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 301,502 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 76% of its contemporaries.
We're also able to compare this research output to 31 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.